BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23754491)

  • 1. Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE.
    Sugase K; Konuma T; Lansing JC; Wright PE
    J Biomol NMR; 2013 Jul; 56(3):275-83. PubMed ID: 23754491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data.
    Kleckner IR; Foster MP
    J Biomol NMR; 2012 Jan; 52(1):11-22. PubMed ID: 22160811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements.
    Kovrigin EL; Kempf JG; Grey MJ; Loria JP
    J Magn Reson; 2006 May; 180(1):93-104. PubMed ID: 16458551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INFOS: spectrum fitting software for NMR analysis.
    Smith AA
    J Biomol NMR; 2017 Feb; 67(2):77-94. PubMed ID: 28160196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters.
    Ishima R; Torchia DA
    J Biomol NMR; 2005 May; 32(1):41-54. PubMed ID: 16041482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RING NMR dynamics: software for analysis of multiple NMR relaxation experiments.
    Beckwith MA; Erazo-Colon T; Johnson BA
    J Biomol NMR; 2021 Jan; 75(1):9-23. PubMed ID: 33098475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated NMR relaxation dispersion data analysis using NESSY.
    Bieri M; Gooley PR
    BMC Bioinformatics; 2011 Oct; 12():421. PubMed ID: 22032230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining protein dynamics from ¹⁵N relaxation data by using DYNAMICS.
    Fushman D
    Methods Mol Biol; 2012; 831():485-511. PubMed ID: 22167688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data.
    Morin S; Linnet TE; Lescanne M; Schanda P; Thompson GS; Tollinger M; Teilum K; Gagné S; Marion D; Griesinger C; Blackledge M; d'Auvergne EJ
    Bioinformatics; 2014 Aug; 30(15):2219-20. PubMed ID: 24764461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HELFIT: Helix fitting by a total least squares method.
    Enkhbayar P; Damdinsuren S; Osaki M; Matsushima N
    Comput Biol Chem; 2008 Aug; 32(4):307-10. PubMed ID: 18467178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive analysis of multifield 15N relaxation parameters in proteins: determination of 15N chemical shift anisotropies.
    Canet D; Barthe P; Mutzenhardt P; Roumestand C
    J Am Chem Soc; 2001 May; 123(19):4567-76. PubMed ID: 11457243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARA: a software environment for the analysis of relaxation data acquired with accordion spectroscopy.
    Harden BJ; Frueh DP
    J Biomol NMR; 2014 Feb; 58(2):83-99. PubMed ID: 24408364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface.
    Berlin K; Longhini A; Dayie TK; Fushman D
    J Biomol NMR; 2013 Dec; 57(4):333-52. PubMed ID: 24170368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.
    Bieri M; d'Auvergne EJ; Gooley PR
    J Biomol NMR; 2011 Jun; 50(2):147-55. PubMed ID: 21618018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
    Matott LS; Singh A; Rabideau AJ
    J Contam Hydrol; 2017 May; 200():35-48. PubMed ID: 28372853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models.
    Kadrmas DJ; Oktay MB
    Med Phys; 2013 Jul; 40(7):072502. PubMed ID: 23822451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy--application to DNS1-c-[D-A2,bu2,Trp4,Leu5]enkephalin and DNS1-c-[D-A2bu2,Trp4,D-Leu5]enkephalin.
    Groth M; Malicka J; Czaplewski C; Ołdziej S; Lankiewicz L; Wiczk W; Liwo A
    J Biomol NMR; 1999 Dec; 15(4):315-30. PubMed ID: 10685340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.
    Lapin J; Nevzorov AA
    J Magn Reson; 2018 Aug; 293():104-114. PubMed ID: 29920407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.