These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 23754495)
1. Identification of Annexin A1 interacting proteins in chronic myeloid leukemia KCL22 cells. Colavita I; Esposito N; Quintarelli C; Nigro E; Pane F; Ruoppolo M; Salvatore F Proteomics; 2013 Aug; 13(16):2414-8. PubMed ID: 23754495 [TBL] [Abstract][Full Text] [Related]
2. Gaining insights into the Bcr-Abl activity-independent mechanisms of resistance to imatinib mesylate in KCL22 cells: a comparative proteomic approach. Colavita I; Esposito N; Martinelli R; Catanzano F; Melo JV; Pane F; Ruoppolo M; Salvatore F Biochim Biophys Acta; 2010 Oct; 1804(10):1974-87. PubMed ID: 20417730 [TBL] [Abstract][Full Text] [Related]
3. Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Ohmine K; Nagai T; Tarumoto T; Miyoshi T; Muroi K; Mano H; Komatsu N; Takaku F; Ozawa K Stem Cells; 2003; 21(3):315-21. PubMed ID: 12743326 [TBL] [Abstract][Full Text] [Related]
4. Proteomic-based identification of Apg-2 as a therapeutic target for chronic myeloid leukemia. Li Y; Chen X; Shi M; Wang H; Cao W; Wang X; Li C; Feng W Cell Signal; 2013 Dec; 25(12):2604-12. PubMed ID: 24012954 [TBL] [Abstract][Full Text] [Related]
5. Cytogenetic characterisation and proteomic profiling of the Imatinib-resistant cell line KCL22-R. Rosenhahn J; Weise A; Michel S; Hennig K; Hartmann I; Schiefner J; Schubert K; Liehr T; von Eggeling F; Loncarevic IF Int J Oncol; 2007 Jul; 31(1):121-8. PubMed ID: 17549412 [TBL] [Abstract][Full Text] [Related]
6. Label-free MSE proteomic analysis of chronic myeloid leukemia bone marrow plasma: disclosing new insights from therapy resistance. Pizzatti L; Panis C; Lemos G; Rocha M; Cecchini R; Souza GH; Abdelhay E Proteomics; 2012 Aug; 12(17):2618-31. PubMed ID: 22761178 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic analysis of chronic myelogenous leukemia cells: inside the mechanism of imatinib resistance. Ferrari G; Pastorelli R; Buchi F; Spinelli E; Gozzini A; Bosi A; Santini V J Proteome Res; 2007 Jan; 6(1):367-75. PubMed ID: 17203980 [TBL] [Abstract][Full Text] [Related]
9. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. Mancini M; Corradi V; Petta S; Barbieri E; Manetti F; Botta M; Santucci MA J Pharmacol Exp Ther; 2011 Mar; 336(3):596-604. PubMed ID: 21041536 [TBL] [Abstract][Full Text] [Related]
10. Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein. Scappini B; Gatto S; Onida F; Ricci C; Divoky V; Wierda WG; Andreeff M; Dong L; Hayes K; Verstovsek S; Kantarjian HM; Beran M Cancer; 2004 Apr; 100(7):1459-71. PubMed ID: 15042680 [TBL] [Abstract][Full Text] [Related]
11. CUEDC2 sensitizes chronic myeloid leukemic cells to imatinib treatment. Zhang H; Chang G; Wang J; Lin Y; Ma L; Pang T Leuk Res; 2013 Nov; 37(11):1583-91. PubMed ID: 24125838 [TBL] [Abstract][Full Text] [Related]
12. The role of TC-PTP (PTPN2) in modulating sensitivity to imatinib and interferon-α in CML cell line, KT-1 cells. Nishiyama-Fujita Y; Shimizu T; Sagawa M; Uchida H; Kizaki M Leuk Res; 2013 Sep; 37(9):1150-5. PubMed ID: 23759247 [TBL] [Abstract][Full Text] [Related]
13. BCR-ABL- and Ras-independent activation of Raf as a novel mechanism of Imatinib resistance in CML. Hentschel J; Rubio I; Eberhart M; Hipler C; Schiefner J; Schubert K; Loncarevic IF; Wittig U; Baniahmad A; von Eggeling F Int J Oncol; 2011 Sep; 39(3):585-91. PubMed ID: 21637917 [TBL] [Abstract][Full Text] [Related]
14. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Barnes DJ; Palaiologou D; Panousopoulou E; Schultheis B; Yong AS; Wong A; Pattacini L; Goldman JM; Melo JV Cancer Res; 2005 Oct; 65(19):8912-9. PubMed ID: 16204063 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance. Pocaly M; Lagarde V; Etienne G; Dupouy M; Lapaillerie D; Claverol S; Vilain S; Bonneu M; Turcq B; Mahon FX; Pasquet JM Proteomics; 2008 Jun; 8(12):2394-406. PubMed ID: 18563733 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of dasatinib- and imatinib-resistant chronic myelogenous leukemia cells. Okabe S; Tauchi T; Ohyashiki K Clin Cancer Res; 2008 Oct; 14(19):6181-6. PubMed ID: 18829496 [TBL] [Abstract][Full Text] [Related]
17. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Tarumoto T; Nagai T; Ohmine K; Miyoshi T; Nakamura M; Kondo T; Mitsugi K; Nakano S; Muroi K; Komatsu N; Ozawa K Exp Hematol; 2004 Apr; 32(4):375-81. PubMed ID: 15050748 [TBL] [Abstract][Full Text] [Related]
18. Apoptosis in chronic myeloid leukemia cells transiently treated with imatinib or dasatinib is caused by residual BCR-ABL kinase inhibition. Simara P; Stejskal S; Koutna I; Potesil D; Tesarova L; Potesilova M; Zdrahal Z; Mayer J Am J Hematol; 2013 May; 88(5):385-93. PubMed ID: 23420553 [TBL] [Abstract][Full Text] [Related]