BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23754557)

  • 1. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410.
    Choi K; Jeon BS; Kim BC; Oh MK; Um Y; Sang BI
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1094-107. PubMed ID: 23754557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1.
    Jeon BS; Moon C; Kim BC; Kim H; Um Y; Sang BI
    Enzyme Microb Technol; 2013 Aug; 53(3):143-51. PubMed ID: 23830453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of feedstocks and downstream processing technologies on the economics of caproic acid production in fermentation by Megasphaera elsdenii T81.
    Kim H; Choi O; Jeon BS; Choe WS; Sang BI
    Bioresour Technol; 2020 Apr; 301():122794. PubMed ID: 31981909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation.
    Aikman PC; Henning PH; Humphries DJ; Horn CH
    J Dairy Sci; 2011 Jun; 94(6):2840-9. PubMed ID: 21605754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81.
    Weimer PJ; Moen GN
    Appl Microbiol Biotechnol; 2013 May; 97(9):4075-81. PubMed ID: 23271673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium.
    Wang H; Li X; Wang Y; Tao Y; Lu S; Zhu X; Li D
    Microb Cell Fact; 2018 Jun; 17(1):99. PubMed ID: 29940966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum.
    Wu Z; Yang ST
    Biotechnol Bioeng; 2003 Apr; 82(1):93-102. PubMed ID: 12569628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Butanol production from corn stover hydrolysate with in-situ liquid-liquid extraction].
    Wang F; Cheng X; Xie H; Zhang R; Li C; Song A
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1515-26. PubMed ID: 24432666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of medium-chain carboxylic acids by Megasphaera sp. MH with supplemental electron acceptors.
    Jeon BS; Choi O; Um Y; Sang BI
    Biotechnol Biofuels; 2016; 9():129. PubMed ID: 27340431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of alfalfa wet-fractionation liquids to volatile fatty acids by Streptococcus bovis and Megasphaera elsdenii.
    Weimer PJ; Digman MF
    Bioresour Technol; 2013 Aug; 142():88-94. PubMed ID: 23732922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate.
    Zautsen RR; Maugeri-Filho F; Vaz-Rossell CE; Straathof AJ; van der Wielen LA; de Bont JA
    Biotechnol Bioeng; 2009 Apr; 102(5):1354-60. PubMed ID: 19062184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mathematical model for ethanol production by extractive fermentation in a continuous stirred tank fermentor.
    Kollerup F; Daugulis AJ
    Biotechnol Bioeng; 1985 Sep; 27(9):1335-46. PubMed ID: 18553823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome.
    Kucek LA; Nguyen M; Angenent LT
    Water Res; 2016 Apr; 93():163-171. PubMed ID: 26905795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii.
    Waldrip HM; Martin SA
    J Anim Sci; 1993 Oct; 71(10):2770-6. PubMed ID: 8226379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans.
    Cheng KC; Demirci A; Catchmark JM
    Food Sci Technol Int; 2011 Apr; 17(2):99-109. PubMed ID: 21421674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies on citric acid production by Aspergillus niger. II. The two-stage process.
    Chmiel A
    Acta Microbiol Pol B; 1975; 7(4):237-42. PubMed ID: 5858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of substrate concentration on the stability and yield of continuous biohydrogen production.
    Kyazze G; Martinez-Perez N; Dinsdale R; Premier GC; Hawkes FR; Guwy AJ; Hawkes DL
    Biotechnol Bioeng; 2006 Apr; 93(5):971-9. PubMed ID: 16353197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1.
    Jeon BS; Kim BC; Um Y; Sang BI
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1161-7. PubMed ID: 20721546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.
    Chen WH; Jian ZC
    Chemosphere; 2013 Oct; 93(4):597-603. PubMed ID: 23866171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production.
    Kim H; Jeon BS; Pandey A; Sang BI
    Bioresour Technol; 2018 Dec; 270():498-503. PubMed ID: 30245320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.