These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 23754725)
1. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. McBeth JM; Fleming EJ; Emerson D Environ Microbiol Rep; 2013 Jun; 5(3):453-63. PubMed ID: 23754725 [TBL] [Abstract][Full Text] [Related]
2. Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. Fleming EJ; Davis RE; McAllister SM; Chan CS; Moyer CL; Tebo BM; Emerson D FEMS Microbiol Ecol; 2013 Jul; 85(1):116-27. PubMed ID: 23480633 [TBL] [Abstract][Full Text] [Related]
3. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Emerson D Biochem Soc Trans; 2012 Dec; 40(6):1211-6. PubMed ID: 23176456 [TBL] [Abstract][Full Text] [Related]
4. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Santoro AE; Francis CA; de Sieyes NR; Boehm AB Environ Microbiol; 2008 Apr; 10(4):1068-79. PubMed ID: 18266758 [TBL] [Abstract][Full Text] [Related]
5. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems. Scott JJ; Breier JA; Luther GW; Emerson D PLoS One; 2015; 10(3):e0119284. PubMed ID: 25760332 [TBL] [Abstract][Full Text] [Related]
6. Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments. McBeth JM; Little BJ; Ray RI; Farrar KM; Emerson D Appl Environ Microbiol; 2011 Feb; 77(4):1405-12. PubMed ID: 21131509 [TBL] [Abstract][Full Text] [Related]
7. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling. Emerson D; Scott JJ; Benes J; Bowden WB Appl Environ Microbiol; 2015 Dec; 81(23):8066-75. PubMed ID: 26386054 [TBL] [Abstract][Full Text] [Related]
8. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Freitag TE; Chang L; Prosser JI Environ Microbiol; 2006 Apr; 8(4):684-96. PubMed ID: 16584480 [TBL] [Abstract][Full Text] [Related]
9. Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities. Garrison CE; Price KA; Field EK Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076431 [TBL] [Abstract][Full Text] [Related]
10. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813 [TBL] [Abstract][Full Text] [Related]
11. Iron-oxidizing bacteria in marine environments: recent progresses and future directions. Makita H World J Microbiol Biotechnol; 2018 Jul; 34(8):110. PubMed ID: 29974320 [TBL] [Abstract][Full Text] [Related]
12. Ecological succession among iron-oxidizing bacteria. Fleming EJ; Cetinić I; Chan CS; Whitney King D; Emerson D ISME J; 2014 Apr; 8(4):804-15. PubMed ID: 24225888 [TBL] [Abstract][Full Text] [Related]
13. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Mosier AC; Francis CA Environ Microbiol; 2008 Nov; 10(11):3002-16. PubMed ID: 18973621 [TBL] [Abstract][Full Text] [Related]
14. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. Bernhard AE; Colbert D; McManus J; Field KG FEMS Microbiol Ecol; 2005 Mar; 52(1):115-28. PubMed ID: 16329898 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Krepski ST; Hanson TE; Chan CS Environ Microbiol; 2012 Jul; 14(7):1671-80. PubMed ID: 22151253 [TBL] [Abstract][Full Text] [Related]
16. High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle. Comolli LR; Luef B; Chan CS Environ Microbiol; 2011 Nov; 13(11):2915-29. PubMed ID: 21895918 [TBL] [Abstract][Full Text] [Related]
17. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. Emerson D; Rentz JA; Lilburn TG; Davis RE; Aldrich H; Chan C; Moyer CL PLoS One; 2007 Aug; 2(7):e667. PubMed ID: 17668050 [TBL] [Abstract][Full Text] [Related]
18. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments. Chan CS; McAllister SM; Leavitt AH; Glazer BT; Krepski ST; Emerson D Front Microbiol; 2016; 7():796. PubMed ID: 27313567 [TBL] [Abstract][Full Text] [Related]
19. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Wu QL; Zwart G; Schauer M; Kamst-van Agterveld MP; Hahn MW Appl Environ Microbiol; 2006 Aug; 72(8):5478-85. PubMed ID: 16885301 [TBL] [Abstract][Full Text] [Related]
20. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. Wang J; Muyzer G; Bodelier PL; Laanbroek HJ ISME J; 2009 Jun; 3(6):715-25. PubMed ID: 19225553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]