These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23755284)

  • 1. High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H₂O₂ distribution during Botrytis cinerea infection in Arabidopsis.
    Simon UK; Polanschütz LM; Koffler BE; Zechmann B
    PLoS One; 2013; 8(6):e65811. PubMed ID: 23755284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection.
    Kuźniak E; Skłodowska M
    J Exp Bot; 2005 Mar; 56(413):921-33. PubMed ID: 15668222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae.
    Großkinsky DK; Koffler BE; Roitsch T; Maier R; Zechmann B
    Phytopathology; 2012 Jul; 102(7):662-73. PubMed ID: 22571419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartment specific response of antioxidants to drought stress in Arabidopsis.
    Koffler BE; Luschin-Ebengreuth N; Stabentheiner E; Müller M; Zechmann B
    Plant Sci; 2014 Oct; 227():133-44. PubMed ID: 25219315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves.
    Kuzniak E; Skłodowska M
    J Exp Bot; 2004 Mar; 55(397):605-12. PubMed ID: 14966215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products.
    Muckenschnabel I; Goodman BA; Williamson B; Lyon GD; Deighton N
    J Exp Bot; 2002 Feb; 53(367):207-14. PubMed ID: 11807124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure of plastids serves as reliable abiotic and biotic stress marker.
    Zechmann B
    PLoS One; 2019; 14(4):e0214811. PubMed ID: 30946768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents.
    Koffler BE; Polanschütz L; Zechmann B
    Protoplasma; 2014 Jul; 251(4):755-69. PubMed ID: 24281833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
    Govrin EM; Levine A
    Curr Biol; 2000 Jun; 10(13):751-7. PubMed ID: 10898976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection.
    Chassot C; Buchala A; Schoonbeek HJ; Métraux JP; Lamotte O
    Plant J; 2008 Aug; 55(4):555-67. PubMed ID: 18452590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities.
    Heyneke E; Luschin-Ebengreuth N; Krajcer I; Wolkinger V; Müller M; Zechmann B
    BMC Plant Biol; 2013 Jul; 13():104. PubMed ID: 23865417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical determination of the subcellular distribution of ascorbate in plants.
    Zechmann B; Stumpe M; Mauch F
    Planta; 2011 Jan; 233(1):1-12. PubMed ID: 20872269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea.
    Costa A; Barbaro MR; Sicilia F; Preger V; Krieger-Liszkay A; Sparla F; De Lorenzo G; Trost P
    Plant Sci; 2015 Apr; 233():32-43. PubMed ID: 25711811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased intracellular H₂O₂ availability preferentially drives glutathione accumulation in vacuoles and chloroplasts.
    Queval G; Jaillard D; Zechmann B; Noctor G
    Plant Cell Environ; 2011 Jan; 34(1):21-32. PubMed ID: 20807372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis.
    Windram O; Madhou P; McHattie S; Hill C; Hickman R; Cooke E; Jenkins DJ; Penfold CA; Baxter L; Breeze E; Kiddle SJ; Rhodes J; Atwell S; Kliebenstein DJ; Kim YS; Stegle O; Borgwardt K; Zhang C; Tabrett A; Legaie R; Moore J; Finkenstadt B; Wild DL; Mead A; Rand D; Beynon J; Ott S; Buchanan-Wollaston V; Denby KJ
    Plant Cell; 2012 Sep; 24(9):3530-57. PubMed ID: 23023172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of photosynthetic gene expression.
    Queval G; Foyer CH
    Philos Trans R Soc Lond B Biol Sci; 2012 Dec; 367(1608):3475-85. PubMed ID: 23148274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spermine and Spermidine Priming against
    Janse van Rensburg HC; Limami AM; Van den Ende W
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-cellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate.
    Fernandez-García N; Martí MC; Jimenez A; Sevilla F; Olmos E
    J Plant Physiol; 2009 Dec; 166(18):2004-12. PubMed ID: 19577325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.