These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23755573)
1. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants. Kim EJ; Jeong YH; Choe HC J Nanosci Nanotechnol; 2013 Mar; 13(3):1679-83. PubMed ID: 23755573 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys. Kim HJ; Choe HC J Nanosci Nanotechnol; 2014 Nov; 14(11):8405-10. PubMed ID: 25958536 [TBL] [Abstract][Full Text] [Related]
3. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials. Kim EJ; Kim WG; Jeong YH; Choe HC J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213 [TBL] [Abstract][Full Text] [Related]
4. Corrosion behavior of nanotubular oxide on the Ti-29Nb-xZr alloy. Kim JU; Kim BH; Lee K; Choe HC; Ko YM J Nanosci Nanotechnol; 2011 Feb; 11(2):1636-9. PubMed ID: 21456255 [TBL] [Abstract][Full Text] [Related]
5. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique. Kim HJ; Jeong YH; Brantley WA; Choe HC J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827 [TBL] [Abstract][Full Text] [Related]
6. Manganese Coatings on Hydroxyapatite-Deposited Ti–29Nb–xHf Alloys After Nanomesh Formation. Park SY; Choe HH J Nanosci Nanotechnol; 2017 Apr; 17(4):2661-665. PubMed ID: 29664264 [TBL] [Abstract][Full Text] [Related]
7. Phenomena of nanotube nucleation and growth on new ternary titanium alloys. Choe HC; Jeong YH; Brantley WA J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479 [TBL] [Abstract][Full Text] [Related]
8. Surface observation of nanotube/micropit formed Ti-Nb-xZr alloy for biocompatibility. Jeong YH; Ban JS; Choe HC J Nanosci Nanotechnol; 2013 Mar; 13(3):1706-9. PubMed ID: 23755577 [TBL] [Abstract][Full Text] [Related]
9. Influence of low modulus Co-Zr alloys surface modification on protein adsorption and MC3T3-E1, NIH3T3 and RAW264.7 cell behaviour. Krishnadath DC; Ruan W; Yang H; Liu J; Zhou X J Biomater Appl; 2021 Mar; 35(8):1061-1070. PubMed ID: 33135572 [TBL] [Abstract][Full Text] [Related]
10. Nanotubular Structure on the Ti-29Nb-5Zr Alloy by Scanning Transmission Electron Microscope. Kim EJ; Jeong YH; Kang BA; Choe HC J Nanosci Nanotechnol; 2015 Jan; 15(1):595-9. PubMed ID: 26328410 [TBL] [Abstract][Full Text] [Related]
11. Surface Characteristics of Nanotube Formed Ti–25Nb–xZr Alloys. Byeon IS; Choe HC J Nanosci Nanotechnol; 2017 Apr; 17(4):2655-660. PubMed ID: 29664261 [TBL] [Abstract][Full Text] [Related]
12. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy. Zhang M; Cai S; Zhang F; Xu G; Wang F; Yu N; Wu X J Mater Sci Mater Med; 2017 Jun; 28(6):82. PubMed ID: 28424946 [TBL] [Abstract][Full Text] [Related]
13. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. Guan RG; Johnson I; Cui T; Zhao T; Zhao ZY; Li X; Liu H J Biomed Mater Res A; 2012 Apr; 100(4):999-1015. PubMed ID: 22307984 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications. Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395 [TBL] [Abstract][Full Text] [Related]
15. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique. Onder S; Kok FN; Kazmanli K; Urgen M Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4337-42. PubMed ID: 23910351 [TBL] [Abstract][Full Text] [Related]
16. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Ning C; Ding D; Dai K; Zhai W; Chen L Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527 [TBL] [Abstract][Full Text] [Related]
17. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Bigi A; Fini M; Bracci B; Boanini E; Torricelli P; Giavaresi G; Aldini NN; Facchini A; Sbaiz F; Giardino R Biomaterials; 2008 Apr; 29(11):1730-6. PubMed ID: 18192001 [TBL] [Abstract][Full Text] [Related]
18. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mukhametkaliyev TM; Surmeneva MA; Vladescu A; Cotrut CM; Braic M; Dinu M; Vranceanu MD; Pana I; Mueller M; Surmenev RA Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():95-103. PubMed ID: 28415551 [TBL] [Abstract][Full Text] [Related]
19. Effects of the nano-tubular anodic TiO2 buffer layer on bioactive hydroxyapatite coating. Piao Z; Qiu J; Wu Y; Park SJ; He W; Timur A; Ryu SC; Kim HK; Hwang YH J Nanosci Nanotechnol; 2011 Jan; 11(1):286-90. PubMed ID: 21446441 [TBL] [Abstract][Full Text] [Related]
20. Characterization of chemically treated Ti-Zr system alloys for dental implant application. Cordeiro JM; Faverani LP; Grandini CR; Rangel EC; da Cruz NC; Nociti Junior FH; Almeida AB; Vicente FB; Morais BRG; Barão VAR; Assunção WG Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():849-861. PubMed ID: 30184814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]