These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23755612)
21. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Jung YC; Bhushan B Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877 [TBL] [Abstract][Full Text] [Related]
22. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659 [TBL] [Abstract][Full Text] [Related]
23. Anisotropic wetting of microstructured surfaces as a function of surface chemistry. Neuhaus S; Spencer ND; Padeste C ACS Appl Mater Interfaces; 2012 Jan; 4(1):123-30. PubMed ID: 22148671 [TBL] [Abstract][Full Text] [Related]
24. Effects of Hierarchical Surface Roughness on Droplet Contact Angle. Bell MS; Shahraz A; Fichthorn KA; Borhan A Langmuir; 2015 Jun; 31(24):6752-62. PubMed ID: 26030089 [TBL] [Abstract][Full Text] [Related]
25. Nature inspired structured surfaces for biomedical applications. Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964 [TBL] [Abstract][Full Text] [Related]
26. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface. Passoni L; Bonvini G; Luzio A; Facibeni A; Bottani CE; Di Fonzo F Langmuir; 2014 Nov; 30(45):13581-7. PubMed ID: 25346328 [TBL] [Abstract][Full Text] [Related]
27. Impact of particle nanotopology on water transport through hydrophobic soils. Truong VK; Owuor EA; Murugaraj P; Crawford RJ; Mainwaring DE J Colloid Interface Sci; 2015 Dec; 460():61-70. PubMed ID: 26319321 [TBL] [Abstract][Full Text] [Related]
28. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation. Cui J; Wang T; Che Z Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799 [TBL] [Abstract][Full Text] [Related]
29. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf. Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180 [TBL] [Abstract][Full Text] [Related]
30. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation. Myronyuk O; Vanagas E; Rodin AM; Wesolowski M Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274712 [TBL] [Abstract][Full Text] [Related]
31. Wetting properties of silicon films from alkyl-passivated particles produced by mechanochemical synthesis. Hallmann S; Fink MJ; Mitchell BS J Colloid Interface Sci; 2010 Aug; 348(2):634-41. PubMed ID: 20580764 [TBL] [Abstract][Full Text] [Related]
32. How to make the Cassie wetting state stable? Whyman G; Bormashenko E Langmuir; 2011 Jul; 27(13):8171-6. PubMed ID: 21644550 [TBL] [Abstract][Full Text] [Related]
33. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731 [TBL] [Abstract][Full Text] [Related]
34. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing. Aldhaleai A; Tsai PA Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783 [TBL] [Abstract][Full Text] [Related]
36. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650 [TBL] [Abstract][Full Text] [Related]
37. Dynamic air layer on textured superhydrophobic surfaces. Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719 [TBL] [Abstract][Full Text] [Related]
38. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces. Lv C; Zhang X; Niu F; He F; Hao P Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939 [TBL] [Abstract][Full Text] [Related]
39. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
40. Objective quantification of surface roughness parameters affecting superhydrophobicity. Cho Y; Park CH RSC Adv; 2020 Aug; 10(52):31251-31260. PubMed ID: 35520686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]