These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23755628)

  • 1. Synthesis of vertically aligned carbon nanofibers-carbon nanowalls by plasma-enhanced chemical vapor deposition.
    Okamoto A; Tanaka K; Yoshimura M; Ueda K; Ghosh P; Tanemura M
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1956-60. PubMed ID: 23755628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.
    Lu C; Dong Q; Tulugan K; Park YM; More MA; Kim J; Kim TG
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1680-4. PubMed ID: 27433646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanowalls as Anode Materials with Improved Performance Using Carbon Nanofibers.
    Kim K; Bon CY; Kim J; Ko JM; Choi W
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of metal-coated carbon nanowalls synthesized by microwave plasma enhanced chemical vapor deposition.
    Lee S; Choi WS; Yoo J; Lim DG; Kim HJ; Lee HJ; Hong B
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9189-93. PubMed ID: 25971035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Plasma Treatment on Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition.
    Jung YH; Kang H; Choi WS; Joung YH; Choi YK
    J Nanosci Nanotechnol; 2016 May; 16(5):5291-4. PubMed ID: 27483917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of carbon nanowalls on metal-coated substrates via microwave plasma enhanced chemical vapor deposition.
    Lee S; Choi WS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9174-7. PubMed ID: 25971032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays.
    Chen G; Shin DH; Iwasaki T; Kawarada H; Lee CJ
    Nanotechnology; 2008 Oct; 19(41):415703. PubMed ID: 21832654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Electrical Properties of Carbon Nanowall by the Deposition of Thin Film.
    Park JK; Kang H; Kim JH; Choi W
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6026-6028. PubMed ID: 29677738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Field Emission from Ultrananocrystalline Diamond-Decorated Carbon Nanowalls Prepared by a Self-Assembly Seeding Technique.
    Huang L; Harajiri S; Wang S; Wu X; Teii K
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4389-4398. PubMed ID: 35005897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of carbon nanowalls from a single-source metal-organic precursor.
    Giese A; Schipporeit S; Buck V; Wöhrl N
    Beilstein J Nanotechnol; 2018; 9():1895-1905. PubMed ID: 30013883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication.
    Yu K; Bo Z; Lu G; Mao S; Cui S; Zhu Y; Chen X; Ruoff RS; Chen J
    Nanoscale Res Lett; 2011 Mar; 6(1):202. PubMed ID: 21711721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Properties of Oxygen Plasma-Treated Carbon Nanowalls Grown on Glass Substrates.
    Jung YH; Choi WS
    J Nanosci Nanotechnol; 2016 May; 16(5):5298-301. PubMed ID: 27483919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Construction of Hierarchical Diamond Supported on Carbon Nanowalls/Diamond for Enhanced Electron Field Emission.
    Zhai Z; Huang N; Yang B; Liu L; Li H; Chen J; Zhang B; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8522-8532. PubMed ID: 31990180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and enhanced field emission properties of IrO2-coated carbon nanotube bundle arrays.
    Chen YM; Chen CA; Huang YS; Lee KY; Tiong KK
    Nanotechnology; 2010 Jan; 21(3):035702. PubMed ID: 19966405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties.
    Jin CH; Wang JY; Chen Q; Peng LM
    J Phys Chem B; 2006 Mar; 110(11):5423-8. PubMed ID: 16539478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of Dye-Sensitized Solar Cells Using Carbon Nanowall Counter Electrodes.
    Jung YH; Jang JH; Kang H; Choi WS; Choi YK; Song WC; Song BS; Lee JH; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5302-4. PubMed ID: 27483920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field emission study of carbon nanotubes forest and array grown on Si using Fe as catalyst deposited by electro-chemical method.
    Kumar A; Husain S; Ali J; Husain M; Harsh ; Husain M
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2829-32. PubMed ID: 22755130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopic investigation of carbon nanowalls.
    Ni ZH; Fan HM; Feng YP; Shen ZX; Yang BJ; Wu YH
    J Chem Phys; 2006 May; 124(20):204703. PubMed ID: 16774360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of carbon nanofibers by catalytic chemical vapor deposition using non-ferromagnetic metal complexes.
    Su CJ; Yuan WL; Lai TW; Lei CM
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4201-6. PubMed ID: 24738371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of plasma-grown carbon oxide and reduced-carbon-oxide nanowalls.
    Choi H; Kwon SH; Kang H; Kim JH; Choi W
    RSC Adv; 2020 Mar; 10(16):9761-9767. PubMed ID: 35497227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.