BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23755654)

  • 21. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.
    Yao L; Shi J; Miao X
    PLoS One; 2015; 10(9):e0139117. PubMed ID: 26418261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.
    Xia L; Ge H; Zhou X; Zhang D; Hu C
    Bioresour Technol; 2013 Sep; 144():261-7. PubMed ID: 23876654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring microalgal nutrient-light synergy to enhance CO
    Chauhan DS; Mohanty K
    J Environ Manage; 2024 Apr; 356():120631. PubMed ID: 38522275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels.
    Wang XW; Liang JR; Luo CS; Chen CP; Gao YH
    Bioresour Technol; 2014 Jun; 161():124-30. PubMed ID: 24698739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode.
    Patidar SK; Mitra M; George B; Soundarya R; Mishra S
    Bioresour Technol; 2014 Nov; 172():32-40. PubMed ID: 25233474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategy study on enhancing lipid productivity of filamentous oleaginous microalgae Tribonema.
    Hui W; Wenjun Z; Wentao C; Lili G; Tianzhong L
    Bioresour Technol; 2016 Oct; 218():161-6. PubMed ID: 27367812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp.
    Jeon H; Lee Y; Chang KS; Lee CG; Jin E
    J Microbiol; 2013 Dec; 51(6):773-6. PubMed ID: 24385354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval.
    Devi MP; Mohan SV
    Bioresour Technol; 2012 May; 112():116-23. PubMed ID: 22440578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consolidated bioprocessing of wastewater cocktail in an algal biorefinery for enhanced biomass, lipid and lutein production coupled with efficient CO
    De Bhowmick G; Sen R; Sarmah AK
    J Environ Manage; 2019 Dec; 252():109696. PubMed ID: 31629179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation.
    Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of flue gas CO
    Ji MK; Yun HS; Hwang JH; Salama ES; Jeon BH; Choi J
    Environ Technol; 2017 Aug; 38(16):2085-2092. PubMed ID: 27796154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation.
    Ho SH; Chen CN; Lai YY; Lu WB; Chang JS
    Bioresour Technol; 2014 Jul; 163():128-35. PubMed ID: 24796513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.
    Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A
    J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation.
    Singh SK; Rahman A; Dixit K; Nath A; Sundaram S
    Environ Technol; 2016; 37(5):613-22. PubMed ID: 26215134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production.
    Kandimalla P; Desi S; Vurimindi H
    Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing biomass, lipid production, and nutrient utilization of the microalga Monoraphidium sp. QLZ-3 in walnut shell extracts supplemented with carbon dioxide.
    Dong X; Han B; Zhao Y; Ding W; Yu X
    Bioresour Technol; 2019 Sep; 287():121419. PubMed ID: 31078811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.