These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23755980)

  • 1. Unraveling the effects of siRNA carrier systems on cell physiology: a multiparametric approach demonstrated on dextran nanogels.
    Soenen SJ; De Backer L; Manshian B; Doak S; Raemdonck K; Demeester J; Braeckmans K; De Smedt S
    Nanomedicine (Lond); 2014 Jan; 9(1):61-76. PubMed ID: 23755980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells.
    Mimi H; Ho KM; Siu YS; Wu A; Li P
    J Control Release; 2012 Feb; 158(1):123-30. PubMed ID: 22094103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of siRNA loaded dextran nanogel with blood cells.
    Naeye B; Raemdonck K; Demeester J; De Smedt SC
    J Control Release; 2010 Nov; 148(1):e90-1. PubMed ID: 21529653
    [No Abstract]   [Full Text] [Related]  

  • 4. Biodegradable dextran nanogels as functional carriers for the intracellular delivery of small interfering RNA.
    Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC
    J Control Release; 2010 Nov; 148(1):e95-6. PubMed ID: 21529657
    [No Abstract]   [Full Text] [Related]  

  • 5. Glycol chitosan-based nanogel as a potential targetable carrier for siRNA.
    Pereira P; Morgado D; Crepet A; David L; Gama FM
    Macromol Biosci; 2013 Oct; 13(10):1369-78. PubMed ID: 23996912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEGylation of biodegradable dextran nanogels for siRNA delivery.
    Naeye B; Raemdonck K; Remaut K; Sproat B; Demeester J; De Smedt SC
    Eur J Pharm Sci; 2010 Jul; 40(4):342-51. PubMed ID: 20435139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemocompatibility of siRNA loaded dextran nanogels.
    Naeye B; Deschout H; Röding M; Rudemo M; Delanghe J; Devreese K; Demeester J; Braeckmans K; De Smedt SC; Raemdonck K
    Biomaterials; 2011 Dec; 32(34):9120-7. PubMed ID: 21890194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalizable and ultrastable zwitterionic nanogels.
    Cheng G; Mi L; Cao Z; Xue H; Yu Q; Carr L; Jiang S
    Langmuir; 2010 May; 26(10):6883-6. PubMed ID: 20405859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged gene silencing by combining siRNA nanogels and photochemical internalization.
    Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC
    J Control Release; 2010 Aug; 145(3):281-8. PubMed ID: 20403396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysozyme-dextran core-shell nanogels prepared via a green process.
    Li J; Yu S; Yao P; Jiang M
    Langmuir; 2008 Apr; 24(7):3486-92. PubMed ID: 18302424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery.
    Cai H; Yao P
    Nanoscale; 2013 Apr; 5(7):2892-900. PubMed ID: 23447082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels.
    Lee H; Mok H; Lee S; Oh YK; Park TG
    J Control Release; 2007 Jun; 119(2):245-52. PubMed ID: 17408798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional nanogels for siRNA delivery.
    Smith MH; Lyon LA
    Acc Chem Res; 2012 Jul; 45(7):985-93. PubMed ID: 22181582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence tomographic imaging of sentinel lymph node using near-infrared emitting bioreducible dextran nanogels.
    Li J; Jiang B; Lin C; Zhuang Z
    Int J Nanomedicine; 2014; 9():5667-82. PubMed ID: 25506217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled curcumin release via conjugation into PBAE nanogels enhances mitochondrial protection against oxidative stress.
    Gupta P; Jordan CT; Mitov MI; Butterfield DA; Hilt JZ; Dziubla TD
    Int J Pharm; 2016 Sep; 511(2):1012-21. PubMed ID: 27492022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core.
    Tamura A; Oishi M; Nagasaki Y
    J Control Release; 2010 Sep; 146(3):378-87. PubMed ID: 20621664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular microenvironment-responsive label-free autofluorescent nanogels for traceable gene delivery.
    Shi B; Zhang H; Qiao SZ; Bi J; Dai S
    Adv Healthc Mater; 2014 Nov; 3(11):1839-48. PubMed ID: 24965262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-functionalized nanogels for targeted siRNA delivery.
    Blackburn WH; Dickerson EB; Smith MH; McDonald JF; Lyon LA
    Bioconjug Chem; 2009 May; 20(5):960-8. PubMed ID: 19341276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient inhibition of ovarian cancer by recombinant CXC chemokine ligand 10 delivered by novel biodegradable cationic heparin-polyethyleneimine nanogels.
    Yang F; Gou M; Deng H; Yi T; Zhong Q; Wei Y; Zhao X
    Oncol Rep; 2012 Aug; 28(2):668-76. PubMed ID: 22684947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems.
    Peng J; Qi T; Liao J; Fan M; Luo F; Li H; Qian Z
    Nanoscale; 2012 Apr; 4(8):2694-704. PubMed ID: 22426443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.