These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23756039)

  • 1. Alkali activation processes for incinerator residues management.
    Lancellotti I; Ponzoni C; Barbieri L; Leonelli C
    Waste Manag; 2013 Aug; 33(8):1740-9. PubMed ID: 23756039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of alkali cation on the mechanical properties and durability of fly ash based geopolymers.
    Nikolić I; Zejak R; Jankovič-Častvan I; Karanović L; Radmilović V; Radmilović V
    Acta Chim Slov; 2013; 60(3):636-43. PubMed ID: 24169718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash.
    Liu ZS; Li WK; Huang CY
    Waste Manag; 2014 May; 34(5):893-900. PubMed ID: 24656468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic carbon leaching behavior from incinerator bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Sep; 137(2):1096-101. PubMed ID: 16675109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.
    Ko MS; Chen YL; Wei PS
    Waste Manag; 2013 Mar; 33(3):615-20. PubMed ID: 23182658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of leaching behaviour by quenching of bottom ash from MSW incineration.
    Marchese F; Genon G
    Waste Manag Res; 2011 Oct; 29(10 Suppl):39-47. PubMed ID: 21057006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer.
    Zheng L; Wang W; Shi Y
    Chemosphere; 2010 Apr; 79(6):665-71. PubMed ID: 20304461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on the characteristics of fly ash and bottom ash geopolymers.
    Chindaprasirt P; Jaturapitakkul C; Chalee W; Rattanasak U
    Waste Manag; 2009 Feb; 29(2):539-43. PubMed ID: 18715775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.
    Chen C; Li Q; Shen L; Zhai J
    Environ Technol; 2012 Jun; 33(10-12):1313-21. PubMed ID: 22856304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.
    Karagiannidis A; Kontogianni S; Logothetis D
    Waste Manag; 2013 Feb; 33(2):363-72. PubMed ID: 23206519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor-based control in eddy current separation of incinerator bottom ash.
    Rahman MA; Bakker MC
    Waste Manag; 2013 Jun; 33(6):1418-24. PubMed ID: 23490354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of ZeoliticWaste in Alkali-Activated Biomass Bottom Ash Blends.
    Vaičiukynienė D; Nizevičienė D; Mikelionienė A; Radzevičius A
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32635331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the coal fly ashes using IR spectroscopy.
    Mozgawa W; Król M; Dyczek J; Deja J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():889-94. PubMed ID: 24935825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.
    Bourtsalas A; Vandeperre L; Grimes S; Themelis N; Koralewska R; Cheeseman C
    Waste Manag Res; 2015 Sep; 33(9):794-804. PubMed ID: 26060195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.
    Chang EE; Pan SY; Yang L; Chen YH; Kim H; Chiang PC
    Waste Manag; 2015 Sep; 43():283-92. PubMed ID: 26025583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.
    Diaz-Loya EI; Allouche EN; Eklund S; Joshi AR; Kupwade-Patil K
    Waste Manag; 2012 Aug; 32(8):1521-7. PubMed ID: 22542857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.
    Biganzoli L; Ilyas A; Praagh Mv; Persson KM; Grosso M
    Waste Manag; 2013 May; 33(5):1174-81. PubMed ID: 23453355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material.
    Lin CL; Weng MC; Chang CH
    J Environ Manage; 2012 Dec; 113():377-82. PubMed ID: 23084273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.