These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23756352)

  • 21. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaseous emissions from waste combustion.
    Werther J
    J Hazard Mater; 2007 Jun; 144(3):604-13. PubMed ID: 17339077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal behavior characteristics of Adhesive residue.
    Jiang X; Li C; Chi Y; Yan J
    Waste Manag; 2009 Nov; 29(11):2824-9. PubMed ID: 19660928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.
    Shin D; Yu T; Yang W; Jeon B; Park S; Hwang J
    Waste Manag; 2008 Nov; 28(11):2422-7. PubMed ID: 18325753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of incinerators on human health and environment.
    Sharma R; Sharma M; Sharma R; Sharma V
    Rev Environ Health; 2013; 28(1):67-72. PubMed ID: 23612530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamental characteristics of input waste of small MSW incinerators in Korea.
    Choi KI; Lee SH; Lee DH; Osako M
    Waste Manag; 2008 Nov; 28(11):2293-300. PubMed ID: 18082391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.
    Münster M; Meibom P
    Waste Manag; 2010 Dec; 30(12):2510-9. PubMed ID: 20471819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-fluid model simulation of an industrial moving grate waste incinerator.
    Xia Z; Shan P; Chen C; Du H; Huang J; Bai L
    Waste Manag; 2020 Mar; 104():183-191. PubMed ID: 31981819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dioxin emission factors for the incineration of different medical waste types.
    Alvim Ferraz MC; Afonso SA
    Arch Environ Contam Toxicol; 2003 May; 44(4):460-6. PubMed ID: 12712276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational simulation of incineration of chemically and biologically contaminated wastes.
    Lemieux P; Boe T; Tschursin A; Denison MK; Davis K; Swensen D
    J Air Waste Manag Assoc; 2021 Apr; 71(4):462-476. PubMed ID: 33216705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Element partitioning in combustion- and gasification-based waste-to-energy units.
    Arena U; Di Gregorio F
    Waste Manag; 2013 May; 33(5):1142-50. PubMed ID: 23465309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Internal circulating fluidized bed incineration system and design algorithm.
    Tian WD; Wei XL; Li J; Sheng HZ
    J Environ Sci (China); 2001 Apr; 13(2):185-8. PubMed ID: 11590739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.
    Njagi NA; Oloo MA; Kithinji J; Kithinji MJ
    J Community Health; 2012 Dec; 37(6):1168-71. PubMed ID: 22718254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of municipal solid waste combustion in a grate furnace.
    Frey HH; Peters B; Hunsinger H; Vehlow J
    Waste Manag; 2003; 23(8):689-701. PubMed ID: 14522187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.
    Lievens P; Verbinnen B; Bollaert P; Alderweireldt N; Mertens G; Elsen J; Vandecasteele C
    Environ Technol; 2011 Oct; 32(13-14):1637-47. PubMed ID: 22329155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An approach for modeling thermal destruction of hazardous wastes in circulating fluidized bed incinerator.
    Patil MP; Sonolikar RL
    J Environ Sci Eng; 2008 Oct; 50(4):289-98. PubMed ID: 19697764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional air pollution caused by dioxins from numerous emission sources: lessons from a domestic experience in Japan.
    Suzuki K; Kawamoto K
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):368-75. PubMed ID: 22547206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.