BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23756464)

  • 1. A DIStinctively novel exoribonuclease that really likes U.
    Gallouzi IE; Wilusz J
    EMBO J; 2013 Jul; 32(13):1799-801. PubMed ID: 23756464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA: lacking in maturity.
    McCarthy N
    Nat Rev Cancer; 2013 Jun; 13(6):377. PubMed ID: 23676851
    [No Abstract]   [Full Text] [Related]  

  • 3. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway.
    Chang HM; Triboulet R; Thornton JE; Gregory RI
    Nature; 2013 May; 497(7448):244-8. PubMed ID: 23594738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.
    Malecki M; Viegas SC; Carneiro T; Golik P; Dressaire C; Ferreira MG; Arraiano CM
    EMBO J; 2013 Jul; 32(13):1842-54. PubMed ID: 23503588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs.
    Łabno A; Warkocki Z; Kuliński T; Krawczyk PS; Bijata K; Tomecki R; Dziembowski A
    Nucleic Acids Res; 2016 Dec; 44(21):10437-10453. PubMed ID: 27431325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis.
    Pirouz M; Wang CH; Liu Q; Ebrahimi AG; Shamsi F; Tseng YH; Gregory RI
    Nat Commun; 2020 May; 11(1):2619. PubMed ID: 32457326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Messenger RNA decay in mammalian cells: the exonuclease perspective.
    Fritz DT; Bergman N; Kilpatrick WJ; Wilusz CJ; Wilusz J
    Cell Biochem Biophys; 2004; 41(2):265-78. PubMed ID: 15475613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exonuclease hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic mRNA.
    Lubas M; Damgaard CK; Tomecki R; Cysewski D; Jensen TH; Dziembowski A
    EMBO J; 2013 Jul; 32(13):1855-68. PubMed ID: 23756462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2.
    Luan S; Luo J; Liu H; Li Z
    RNA Biol; 2019 Feb; 16(2):160-165. PubMed ID: 30638126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
    Webster MW; Chen YH; Stowell JAW; Alhusaini N; Sweet T; Graveley BR; Coller J; Passmore LA
    Mol Cell; 2018 Jun; 70(6):1089-1100.e8. PubMed ID: 29932902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe.
    Chung CZ; Jaramillo JE; Ellis MJ; Bour DYN; Seidl LE; Jo DHS; Turk MA; Mann MR; Bi Y; Haniford DB; Duennwald ML; Heinemann IU
    Nucleic Acids Res; 2019 Apr; 47(6):3045-3057. PubMed ID: 30715470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila.
    Reimão-Pinto MM; Manzenreither RA; Burkard TR; Sledz P; Jinek M; Mechtler K; Ameres SL
    EMBO J; 2016 Nov; 35(22):2417-2434. PubMed ID: 27729457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B.
    Suzuki HI; Katsura A; Miyazono K
    Cancer Sci; 2015 Sep; 106(9):1174-81. PubMed ID: 26080928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes.
    Wahle E; Winkler GS
    Biochim Biophys Acta; 2013; 1829(6-7):561-70. PubMed ID: 23337855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of
    Hunter RW; Liu Y; Manjunath H; Acharya A; Jones BT; Zhang H; Chen B; Ramalingam H; Hammer RE; Xie Y; Richardson JA; Rakheja D; Carroll TJ; Mendell JT
    Genes Dev; 2018 Jul; 32(13-14):903-908. PubMed ID: 29950491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility.
    Astuti D; Morris MR; Cooper WN; Staals RH; Wake NC; Fews GA; Gill H; Gentle D; Shuib S; Ricketts CJ; Cole T; van Essen AJ; van Lingen RA; Neri G; Opitz JM; Rump P; Stolte-Dijkstra I; Müller F; Pruijn GJ; Latif F; Maher ER
    Nat Genet; 2012 Feb; 44(3):277-84. PubMed ID: 22306653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of the eukaryotic exosome.
    Chlebowski A; Tomecki R; López ME; Séraphin B; Dziembowski A
    Adv Exp Med Biol; 2010; 702():63-78. PubMed ID: 21618875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2.
    Morris MR; Astuti D; Maher ER
    Am J Med Genet C Semin Med Genet; 2013 May; 163C(2):106-13. PubMed ID: 23613427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term survival of a patient with Perlman syndrome due to novel compound heterozygous missense mutations in RNB domain of DIS3L2.
    Soma N; Higashimoto K; Imamura M; Saitoh A; Soejima H; Nagasaki K
    Am J Med Genet A; 2017 Apr; 173(4):1077-1081. PubMed ID: 28328139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional link between the mammalian exosome and mRNA decapping.
    Wang Z; Kiledjian M
    Cell; 2001 Dec; 107(6):751-62. PubMed ID: 11747811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.