These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23756558)

  • 1. Neutron imaging of ion transport in mesoporous carbon materials.
    Sharma K; Bilheux HZ; Walker LM; Voisin S; Mayes RT; Kiggans JO; Yiacoumi S; DePaoli DW; Dai S; Tsouris C
    Phys Chem Chem Phys; 2013 Jul; 15(28):11740-7. PubMed ID: 23756558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.
    Sharma K; Kim YH; Gabitto J; Mayes RT; Yiacoumi S; Bilheux HZ; Walker LM; Dai S; Tsouris C
    Langmuir; 2015 Jan; 31(3):1038-47. PubMed ID: 25533167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced capacitive deionization of graphene/mesoporous carbon composites.
    Zhang D; Wen X; Shi L; Yan T; Zhang J
    Nanoscale; 2012 Sep; 4(17):5440-6. PubMed ID: 22836788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization.
    Kim YJ; Choi JH
    Water Res; 2012 Nov; 46(18):6033-9. PubMed ID: 22980574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent ion selectivity in capacitive charging of porous electrodes.
    Zhao R; van Soestbergen M; Rijnaarts HH; van der Wal A; Bazant MZ; Biesheuvel PM
    J Colloid Interface Sci; 2012 Oct; 384(1):38-44. PubMed ID: 22819395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of membrane capacitive deionization including the effect of the electrode pore space.
    Biesheuvel PM; Zhao R; Porada S; van der Wal A
    J Colloid Interface Sci; 2011 Aug; 360(1):239-48. PubMed ID: 21592485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination.
    Liu X; Whitacre JF; Mauter MS
    Environ Sci Technol; 2018 Nov; 52(21):12633-12641. PubMed ID: 30240196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance identification and rational process design in Capacitive Deionization.
    Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A
    Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water.
    Shpigel N; Levi MD; Sigalov S; Aurbach D; Daikhin L; Presser V
    J Phys Condens Matter; 2016 Mar; 28(11):114001. PubMed ID: 26902741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy recovery in membrane capacitive deionization.
    Długołęcki P; van der Wal A
    Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Soft Electrodes in Capacitive Deionization of Solutions.
    Ahualli S; Iglesias GR; Fernández MM; Jiménez ML; Delgado ÁV
    Environ Sci Technol; 2017 May; 51(9):5326-5333. PubMed ID: 28368580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.