These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23756632)

  • 1. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.
    Boyd DA; Shields AR; Howell PB; Ligler FS
    Lab Chip; 2013 Aug; 13(15):3105-10. PubMed ID: 23756632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow.
    Choi CH; Yi H; Hwang S; Weitz DA; Lee CS
    Lab Chip; 2011 Apr; 11(8):1477-83. PubMed ID: 21390381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic fabrication of polymeric and biohybrid fibers with predesigned size and shape.
    Boyd DA; Adams AA; Daniele MA; Ligler FS
    J Vis Exp; 2014 Jan; (83):e50958. PubMed ID: 24430733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic shaping, polymerization, and subsequent modification of thiol click fibers.
    Boyd DA; Shields AR; Naciri J; Ligler FS
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):114-9. PubMed ID: 23215013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic microfabrication via"on the fly" photopolymerization of microscale fibers and tubes.
    Jeong W; Kim J; Kim S; Lee S; Mensing G; Beebe DJ
    Lab Chip; 2004 Dec; 4(6):576-80. PubMed ID: 15570368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.
    Ashley JF; Cramer NB; Davis RH; Bowman CN
    Lab Chip; 2011 Aug; 11(16):2772-8. PubMed ID: 21691663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices.
    Feidenhans'l NA; Lafleur JP; Jensen TG; Kutter JP
    Electrophoresis; 2014 Feb; 35(2-3):282-8. PubMed ID: 23983194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Controlled Fabrication of Polyaniline Microfibers Based on 3D Hydrodynamic Focusing Approach.
    Yoo I; Song S; Uh K; Lee CW; Kim JM
    Macromol Rapid Commun; 2015 Jul; 36(13):1272-6. PubMed ID: 25882095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-Cross-Linked Poly(ethylene glycol) Diacrylate Hydrogels: Spherical Microparticles to Bow Tie-Shaped Microfibers.
    Sharifi F; Patel BB; McNamara MC; Meis PJ; Roghair MN; Lu M; Montazami R; Sakaguchi DS; Hashemi NN
    ACS Appl Mater Interfaces; 2019 May; 11(20):18797-18807. PubMed ID: 31042026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of alginate microfibers with a roller-assisted microfluidic system.
    Su J; Zheng Y; Wu H
    Lab Chip; 2009 Apr; 9(7):996-1001. PubMed ID: 19294313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.