BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23757054)

  • 21. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
    Fazi F; Nervi C
    Cardiovasc Res; 2008 Sep; 79(4):553-61. PubMed ID: 18539629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential.
    Murray IR; Baily JE; Chen WCW; Dar A; Gonzalez ZN; Jensen AR; Petrigliano FA; Deb A; Henderson NC
    Pharmacol Ther; 2017 Mar; 171():65-74. PubMed ID: 27595928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perivascular multipotent progenitor cells in human organs.
    Crisan M; Chen CW; Corselli M; Andriolo G; Lazzari L; Péault B
    Ann N Y Acad Sci; 2009 Sep; 1176():118-23. PubMed ID: 19796239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction.
    Fligny C; Duffield JS
    Curr Opin Rheumatol; 2013 Jan; 25(1):78-86. PubMed ID: 23196325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells.
    Boado RJ; Pardridge WM
    J Neurosci Res; 1994 Nov; 39(4):430-5. PubMed ID: 7884822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs.
    Quattrocelli M; Palazzolo G; Floris G; Schöffski P; Anastasia L; Orlacchio A; Vandendriessche T; Chuah MK; Cossu G; Verfaillie C; Sampaolesi M
    J Pathol; 2011 Apr; 223(5):593-603. PubMed ID: 21341275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perivascular ancestors of adult multipotent stem cells.
    Corselli M; Chen CW; Crisan M; Lazzari L; Péault B
    Arterioscler Thromb Vasc Biol; 2010 Jun; 30(6):1104-9. PubMed ID: 20453168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity.
    Nishiyama A; Komitova M; Suzuki R; Zhu X
    Nat Rev Neurosci; 2009 Jan; 10(1):9-22. PubMed ID: 19096367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunohistochemical localization and characterization of putative mesenchymal stem cell markers in the retinal capillary network of rodents.
    Wittig D; Jászai J; Corbeil D; Funk RH
    Cells Tissues Organs; 2013; 197(5):344-59. PubMed ID: 23571553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair.
    Peng H; Huard J
    Transpl Immunol; 2004 Apr; 12(3-4):311-9. PubMed ID: 15157924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression profile of an operationally-defined neural stem cell clone.
    Parker MA; Anderson JK; Corliss DA; Abraria VE; Sidman RL; Park KI; Teng YD; Cotanche DA; Snyder EY
    Exp Neurol; 2005 Aug; 194(2):320-32. PubMed ID: 15992799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Astroglial cells in development, regeneration, and repair.
    Vaccarino FM; Fagel DM; Ganat Y; Maragnoli ME; Ment LR; Ohkubo Y; Schwartz ML; Silbereis J; Smith KM
    Neuroscientist; 2007 Apr; 13(2):173-85. PubMed ID: 17404377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular wall as a reservoir for different types of stem and progenitor cells.
    Ergün S; Tilki D; Klein D
    Antioxid Redox Signal; 2011 Aug; 15(4):981-95. PubMed ID: 20712422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural crest cell lineage restricts skeletal muscle progenitor cell differentiation through Neuregulin1-ErbB3 signaling.
    Van Ho AT; Hayashi S; Bröhl D; Auradé F; Rattenbach R; Relaix F
    Dev Cell; 2011 Aug; 21(2):273-87. PubMed ID: 21782525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium influx pathways in rat CNS pericytes.
    Kamouchi M; Kitazono T; Ago T; Wakisaka M; Ooboshi H; Ibayashi S; Iida M
    Brain Res Mol Brain Res; 2004 Jul; 126(2):114-20. PubMed ID: 15249134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural differentiation of rat aorta pericyte cells.
    Montiel-Eulefi E; Nery AA; Rodrigues LC; Sánchez R; Romero F; Ulrich H
    Cytometry A; 2012 Jan; 81(1):65-71. PubMed ID: 21990144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular acidification activates cAMP responsive element binding protein via Na+/H+ exchanger isoform 1-mediated Ca²⁺ oscillation in central nervous system pericytes.
    Nakamura K; Kamouchi M; Arimura K; Nishimura A; Kuroda J; Ishitsuka K; Tokami H; Sugimori H; Ago T; Kitazono T
    Arterioscler Thromb Vasc Biol; 2012 Nov; 32(11):2670-7. PubMed ID: 22922957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage.
    Thanabalasundaram G; Schneidewind J; Pieper C; Galla HJ
    Int J Biochem Cell Biol; 2011 Sep; 43(9):1284-93. PubMed ID: 21601005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle regeneration: cellular and molecular events.
    Karalaki M; Fili S; Philippou A; Koutsilieris M
    In Vivo; 2009; 23(5):779-96. PubMed ID: 19779115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.