These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 23757135)
1. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor. Lee X; Azevedo MD; Armstrong DJ; Banowetz GM; Reimmann C Environ Microbiol Rep; 2013 Feb; 5(1):83-9. PubMed ID: 23757135 [TBL] [Abstract][Full Text] [Related]
2. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. Halgren A; Azevedo M; Mills D; Armstrong D; Thimmaiah M; McPhail K; Banowetz G J Appl Microbiol; 2011 Oct; 111(4):949-59. PubMed ID: 21726360 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6. Okrent RA; Trippe KM; Maselko M; Manning V Microbiology (Reading); 2017 Feb; 163(2):207-217. PubMed ID: 28270265 [TBL] [Abstract][Full Text] [Related]
5. Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis. Halgren A; Maselko M; Azevedo M; Mills D; Armstrong D; Banowetz G Microbiology (Reading); 2013 Jan; 159(Pt 1):36-45. PubMed ID: 23125119 [TBL] [Abstract][Full Text] [Related]
6. Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in Smith DDN; Williams AN; Verrett JN; Bergbusch NT; Manning V; Trippe K; Stavrinides J J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745372 [No Abstract] [Full Text] [Related]
7. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Lee X; Reimmann C; Greub G; Sufrin J; Croxatto A Microbes Infect; 2012 Mar; 14(3):268-72. PubMed ID: 22064067 [TBL] [Abstract][Full Text] [Related]
8. Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid. Lee X; Fox A; Sufrin J; Henry H; Majcherczyk P; Haas D; Reimmann C J Bacteriol; 2010 Aug; 192(16):4251-5. PubMed ID: 20543073 [TBL] [Abstract][Full Text] [Related]
9. Detection of 4-formylaminooxyvinylglycine in culture filtrates of Pseudomonas fluorescens WH6 and Pantoea ananatis BRT175 by laser ablation electrospray ionization-mass spectrometry. Okrent RA; Trippe KM; Manning VA; Walsh CM PLoS One; 2018; 13(7):e0200481. PubMed ID: 29990341 [TBL] [Abstract][Full Text] [Related]
11. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Chen XH; Scholz R; Borriss M; Junge H; Mögel G; Kunz S; Borriss R J Biotechnol; 2009 Mar; 140(1-2):38-44. PubMed ID: 19061923 [TBL] [Abstract][Full Text] [Related]
12. Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor. Okrent RA; Halgren AB; Azevedo MD; Chang JH; Mills DI; Maselko M; Armstrong DJ; Banowetz GM; Trippe KM Microbiology (Reading); 2014 Nov; 160(Pt 11):2432-2442. PubMed ID: 25165126 [TBL] [Abstract][Full Text] [Related]
13. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Paternoster T; Défago G; Duffy B; Gessler C; Pertot I Int Microbiol; 2010 Dec; 13(4):195-206. PubMed ID: 21404214 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Cabrefiga J; Bonaterra A; Montesinos E Int Microbiol; 2007 Jun; 10(2):123-32. PubMed ID: 17661291 [TBL] [Abstract][Full Text] [Related]
15. Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight. Mikiciński A; Sobiczewski P; Puławska J; Malusa E Arch Microbiol; 2016 Aug; 198(6):531-9. PubMed ID: 27002332 [TBL] [Abstract][Full Text] [Related]
16. Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora. Fischer TC; Gosch C; Mirbeth B; Gselmann M; Thallmair V; Stich K J Agric Food Chem; 2012 Dec; 60(49):12074-81. PubMed ID: 23163769 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of the antimetabolite 6-thioguanine in Erwinia amylovora plays a key role in fire blight pathogenesis. Coyne S; Chizzali C; Khalil MN; Litomska A; Richter K; Beerhues L; Hertweck C Angew Chem Int Ed Engl; 2013 Sep; 52(40):10564-8. PubMed ID: 24038828 [TBL] [Abstract][Full Text] [Related]
18. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae. Zhao Y; He SY; Sundin GW Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298 [TBL] [Abstract][Full Text] [Related]
19. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Smits TH; Rezzonico F; Kamber T; Blom J; Goesmann A; Frey JE; Duffy B Mol Plant Microbe Interact; 2010 Apr; 23(4):384-93. PubMed ID: 20192826 [TBL] [Abstract][Full Text] [Related]
20. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Böszörményi E; Ersek T; Fodor A; Fodor AM; Földes LS; Hevesi M; Hogan JS; Katona Z; Klein MG; Kormány A; Pekár S; Szentirmai A; Sztaricskai F; Taylor RA J Appl Microbiol; 2009 Sep; 107(3):746-59. PubMed ID: 19320949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]