BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23757216)

  • 1. Microwave-assisted synthesis of dual-conducting Cu2O@Cu-graphene system with improved electrochemical performance as anode material for lithium batteries.
    Li N; Xiao Y; Hu C; Cao M
    Chem Asian J; 2013 Sep; 8(9):1960-5. PubMed ID: 23757216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green and controlled synthesis of Cu2O-graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach.
    Zhang Y; Wang X; Zeng L; Song S; Liu D
    Dalton Trans; 2012 Apr; 41(15):4316-9. PubMed ID: 22434347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blister packing of copper hydroxide and titania nanoparticles on graphene and its recycling.
    Sridhar V; Gangaraju D; Chun HH; Park H
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12323-8. PubMed ID: 24256137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries.
    Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA
    Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Graphene Modified Cu Current Collector on the Performance of Li
    Jiang J; Nie P; Ding B; Wu W; Chang Z; Wu Y; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30926-30932. PubMed ID: 27734672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li ion battery materials with core-shell nanostructures.
    Su L; Jing Y; Zhou Z
    Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries.
    Sun Y; Hu X; Luo W; Huang Y
    ACS Nano; 2011 Sep; 5(9):7100-7. PubMed ID: 21823572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries.
    Shin JH; Park SH; Hyun SM; Kim JW; Park HM; Song JY
    Phys Chem Chem Phys; 2014 Sep; 16(34):18226-32. PubMed ID: 25055242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries.
    Guo P; Song H; Chen X; Ma L; Wang G; Wang F
    Anal Chim Acta; 2011 Mar; 688(2):146-55. PubMed ID: 21334479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries.
    Li B; Rooney DW; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5057-63. PubMed ID: 23688074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries.
    Zhu Y; Liu W; Zhang X; He J; Chen J; Wang Y; Cao T
    Langmuir; 2013 Jan; 29(2):744-9. PubMed ID: 23268716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries.
    Rehnlund D; Valvo M; Tai CW; Ångström J; Sahlberg M; Edström K; Nyholm L
    Nanoscale; 2015 Aug; 7(32):13591-604. PubMed ID: 26206712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.