These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1157 related articles for article (PubMed ID: 23757379)
1. EEG-based classification of imaginary left and right foot movements using beta rebound. Hashimoto Y; Ushiba J Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379 [TBL] [Abstract][Full Text] [Related]
2. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI. Tariq M; Trivailo PM; Simic M PLoS One; 2020; 15(3):e0230184. PubMed ID: 32182270 [TBL] [Abstract][Full Text] [Related]
3. Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): motor-imagery duration effects. Nam CS; Jeon Y; Kim YJ; Lee I; Park K Clin Neurophysiol; 2011 Mar; 122(3):567-577. PubMed ID: 20800538 [TBL] [Abstract][Full Text] [Related]
4. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Morash V; Bai O; Furlani S; Lin P; Hallett M Clin Neurophysiol; 2008 Nov; 119(11):2570-8. PubMed ID: 18845473 [TBL] [Abstract][Full Text] [Related]
5. EEG oscillatory patterns and classification of sequential compound limb motor imagery. Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435 [TBL] [Abstract][Full Text] [Related]
6. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Pfurtscheller G; Brunner C; Schlögl A; Lopes da Silva FH Neuroimage; 2006 May; 31(1):153-9. PubMed ID: 16443377 [TBL] [Abstract][Full Text] [Related]
7. Could the beta rebound in the EEG be suitable to realize a "brain switch"? Pfurtscheller G; Solis-Escalante T Clin Neurophysiol; 2009 Jan; 120(1):24-9. PubMed ID: 19028138 [TBL] [Abstract][Full Text] [Related]
8. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis. Gu L; Yu Z; Ma T; Wang H; Li Z; Fan H Neuroscience; 2020 Jun; 436():93-109. PubMed ID: 32283182 [TBL] [Abstract][Full Text] [Related]
9. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808 [TBL] [Abstract][Full Text] [Related]
10. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
11. Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis. Vallabhaneni A; He B Neurol Res; 2004 Apr; 26(3):282-7. PubMed ID: 15142321 [TBL] [Abstract][Full Text] [Related]
12. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003 [TBL] [Abstract][Full Text] [Related]
13. Beta rebound after different types of motor imagery in man. Pfurtscheller G; Neuper C; Brunner C; da Silva FL Neurosci Lett; 2005 Apr; 378(3):156-9. PubMed ID: 15781150 [TBL] [Abstract][Full Text] [Related]
14. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. Huang D; Lin P; Fei DY; Chen X; Bai O J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679 [TBL] [Abstract][Full Text] [Related]
15. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703 [TBL] [Abstract][Full Text] [Related]
16. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. Hasegawa K; Kasuga S; Takasaki K; Mizuno K; Liu M; Ushiba J J Neuroeng Rehabil; 2017 Aug; 14(1):85. PubMed ID: 28841920 [TBL] [Abstract][Full Text] [Related]
17. EEG feature comparison and classification of simple and compound limb motor imagery. Yi W; Qiu S; Qi H; Zhang L; Wan B; Ming D J Neuroeng Rehabil; 2013 Oct; 10():106. PubMed ID: 24119261 [TBL] [Abstract][Full Text] [Related]
18. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related]
19. EEG-based discrimination between imagination of right and left hand movement. Pfurtscheller G; Neuper C; Flotzinger D; Pregenzer M Electroencephalogr Clin Neurophysiol; 1997 Dec; 103(6):642-51. PubMed ID: 9546492 [TBL] [Abstract][Full Text] [Related]
20. Effect of real-time cortical feedback in motor imagery-based mental practice training. Bai O; Huang D; Fei DY; Kunz R NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]