BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 23757480)

  • 1. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles.
    Lukacs R; Blümel R; Zimmerman B; Bağcıoğlu M; Kohler A
    Analyst; 2015 May; 140(9):3273-84. PubMed ID: 25797528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of absorption spectra from Fourier transform infrared (FT-IR) microspectroscopic measurements of intact spheres.
    van Dijk T; Mayerich D; Carney PS; Bhargava R
    Appl Spectrosc; 2013 May; 67(5):546-52. PubMed ID: 23643044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm.
    Bassan P; Sachdeva A; Kohler A; Hughes C; Henderson A; Boyle J; Shanks JH; Brown M; Clarke NW; Gardner P
    Analyst; 2012 Mar; 137(6):1370-7. PubMed ID: 22318917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflection optical two-dimensional Fourier-transform spectroscopy.
    Li H; Moody G; Cundiff ST
    Opt Express; 2013 Jan; 21(2):1687-92. PubMed ID: 23389154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits.
    Lu HS; Xu HR; Ying YB; Fu XP; Yu HY; Tian HQ
    J Zhejiang Univ Sci B; 2006 Oct; 7(10):794-9. PubMed ID: 16972321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials.
    Filik J; Frogley MD; Pijanka JK; Wehbe K; Cinque G
    Analyst; 2012 Feb; 137(4):853-61. PubMed ID: 22231204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflection and transmission measurements with an integrating sphere and Fourier-transform infrared spectrometer.
    Ojala KT; Koski E; Lampinen MJ
    Appl Opt; 1992 Aug; 31(22):4582-9. PubMed ID: 20725464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets.
    Kessler W; Oelkrug D; Kessler R
    Anal Chim Acta; 2009 May; 642(1-2):127-34. PubMed ID: 19427467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues.
    Konevskikh T; Lukacs R; Kohler A
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28792669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared attenuated total reflection and transmission spectra studied by dispersion analysis.
    MacDonald SA; Bureau B
    Appl Spectrosc; 2003 Mar; 57(3):282-7. PubMed ID: 14658619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Sphere Clusters as a Model to Understand Infrared Spectroscopic Imaging Data Recorded from Complex Samples.
    Rasskazov IL; Spegazzini N; Carney PS; Bhargava R
    Anal Chem; 2017 Oct; 89(20):10813-10818. PubMed ID: 28895722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR bio-spectroscopy scattering correction using natural biological characteristics of different cell lines.
    Hariri S; Barzegari B S; Keshavarz F K; Nikounezhad N; Safaei B; Farnam G; Shirazi FH
    Analyst; 2019 Sep; 144(19):5810-5828. PubMed ID: 31469152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of instrument line shape in Fourier transform spectrometry using matrix inversion.
    Desbiens R; Genest J; Tremblay P; Bouchard JP
    Appl Opt; 2006 Jul; 45(21):5270-80. PubMed ID: 16826265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.
    Konevskikh T; Ponossov A; Blümel R; Lukacs R; Kohler A
    Analyst; 2015 Jun; 140(12):3969-80. PubMed ID: 25893226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing.
    Bassan P; Kohler A; Martens H; Lee J; Jackson E; Lockyer N; Dumas P; Brown M; Clarke N; Gardner P
    J Biophotonics; 2010 Aug; 3(8-9):609-20. PubMed ID: 20414907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.