These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 23757549)
1. A new performance index for the repetitive motion of mobile manipulators. Xiao L; Zhang Y IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549 [TBL] [Abstract][Full Text] [Related]
2. A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. Zhang Y; Ge SS; Lee TH IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2126-32. PubMed ID: 15503508 [TBL] [Abstract][Full Text] [Related]
3. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions. Cowlagi RV; Tsiotras P IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1455-69. PubMed ID: 22581136 [TBL] [Abstract][Full Text] [Related]
4. A Repeatable Motion Scheme for Kinematic Control of Redundant Manipulators. Ying K; Qingqing T; Ruiyang Z; Lv Y Comput Intell Neurosci; 2019; 2019():5426986. PubMed ID: 31641347 [TBL] [Abstract][Full Text] [Related]
5. Mobile robotic sensors for perimeter detection and tracking. Clark J; Fierro R ISA Trans; 2007 Feb; 46(1):3-13. PubMed ID: 17275822 [TBL] [Abstract][Full Text] [Related]
6. A Velocity-Level Bi-Criteria Optimization Scheme for Coordinated Path Tracking of Dual Robot Manipulators Using Recurrent Neural Network. Xiao L; Zhang Y; Liao B; Zhang Z; Ding L; Jin L Front Neurorobot; 2017; 11():47. PubMed ID: 28928651 [TBL] [Abstract][Full Text] [Related]
7. Robust adaptive control of cooperating mobile manipulators with relative motion. Li Z; Tao PY; Ge SS; Adams M; Wijesoma WS IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):103-16. PubMed ID: 19150761 [TBL] [Abstract][Full Text] [Related]
8. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
9. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots. Zhang Z; Li Z; Zhang Y; Luo Y; Li Y IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3251-62. PubMed ID: 26340789 [TBL] [Abstract][Full Text] [Related]
10. Flocking of multiple mobile robots based on backstepping. Dong W IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643 [TBL] [Abstract][Full Text] [Related]
11. Action selection for single-camera SLAM. Vidal-Calleja TA; Sanfeliu A; Andrade-Cetto J IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1567-81. PubMed ID: 20350845 [TBL] [Abstract][Full Text] [Related]
12. G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. Jin L; Zhang Y IEEE Trans Cybern; 2015 Feb; 45(2):153-64. PubMed ID: 24846689 [TBL] [Abstract][Full Text] [Related]
13. Hybrid Orientation and Position Collaborative Motion Generation Scheme for a Multiple Mobile Redundant Manipulator System Synthesized by a Recurrent Neural Network. Ren X; Guo J; Chen S; Deng X; Zhang Z IEEE Trans Cybern; 2024 Oct; 54(10):6035-6047. PubMed ID: 39106132 [TBL] [Abstract][Full Text] [Related]
14. Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme. Ibeas A; de la Sen M IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1162-79. PubMed ID: 17036821 [TBL] [Abstract][Full Text] [Related]
15. Constrained motion control of flexible robot manipulators based on recurrent neural networks. Tian L; Wang J; Mao Z IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923 [TBL] [Abstract][Full Text] [Related]
16. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. Li Z; Ge SS; Ming A IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):607-16. PubMed ID: 17550115 [TBL] [Abstract][Full Text] [Related]
17. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors. Chang C IEEE Trans Neural Netw; 2005 Nov; 16(6):1582-9. PubMed ID: 16342498 [TBL] [Abstract][Full Text] [Related]
18. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. López-Nicolás G; Gans NR; Bhattacharya S; Sagüés C; Guerrero JJ; Hutchinson S IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1115-27. PubMed ID: 19923049 [TBL] [Abstract][Full Text] [Related]
19. Symbolic dynamic filtering and language measure for behavior identification of mobile robots. Mallapragada G; Ray A; Jin X IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):647-59. PubMed ID: 22067436 [TBL] [Abstract][Full Text] [Related]
20. Robust multiperson detection and tracking for mobile service and social robots. Li L; Yan S; Yu X; Tan YK; Li H IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1398-412. PubMed ID: 22542684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]