BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23758273)

  • 21. An aminoglycoside microarray platform for directly monitoring and studying antibiotic resistance.
    Disney MD; Barrett OJ
    Biochemistry; 2007 Oct; 46(40):11223-30. PubMed ID: 17867707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila.
    Fong DH; Lemke CT; Hwang J; Xiong B; Berghuis AM
    J Biol Chem; 2010 Mar; 285(13):9545-9555. PubMed ID: 20089863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of aminoglycoside-deactivating enzymes APH(3')-IIIa and AAC(6')-Ii by amphiphilic paromomycin O2''-ether analogues.
    Szychowski J; Kondo J; Zahr O; Auclair K; Westhof E; Hanessian S; Keillor JW
    ChemMedChem; 2011 Nov; 6(11):1961-6. PubMed ID: 21905229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.
    Smith CA; Toth M; Stewart NK; Maltz L; Vakulenko SB
    Acta Crystallogr D Struct Biol; 2019 Dec; 75(Pt 12):1129-1137. PubMed ID: 31793906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry.
    Fong DH; Berghuis AM
    EMBO J; 2002 May; 21(10):2323-31. PubMed ID: 12006485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active site labeling of the gentamicin resistance enzyme AAC(6')-APH(2") by the lipid kinase inhibitor wortmannin.
    Boehr DD; Lane WS; Wright GD
    Chem Biol; 2001 Aug; 8(8):791-800. PubMed ID: 11514228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases.
    Shi K; Berghuis AM
    J Biol Chem; 2012 Apr; 287(16):13094-102. PubMed ID: 22371504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections.
    Labby KJ; Garneau-Tsodikova S
    Future Med Chem; 2013 Jul; 5(11):1285-309. PubMed ID: 23859208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance.
    Nurizzo D; Shewry SC; Perlin MH; Brown SA; Dholakia JN; Fuchs RL; Deva T; Baker EN; Smith CA
    J Mol Biol; 2003 Mar; 327(2):491-506. PubMed ID: 12628253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coexistence of genes encoding aminoglycoside modifying enzymes among clinical Acinetobacter baumannii isolates in Ahvaz, Southwest Iran.
    Shooshtari FS; Navidifar T; Amin M; Goodarzi H
    Acta Microbiol Immunol Hung; 2019 Dec; 67(1):33-41. PubMed ID: 31833384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular identification of aminoglycoside-modifying enzymes in clinical isolates of Escherichia coli resistant to amoxicillin/clavulanic acid isolated in Spain.
    Fernández-Martínez M; Miró E; Ortega A; Bou G; González-López JJ; Oliver A; Pascual A; Cercenado E; Oteo J; Martínez-Martínez L; Navarro F;
    Int J Antimicrob Agents; 2015 Aug; 46(2):157-63. PubMed ID: 26022930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rv3168 phosphotransferase activity mediates kanamycin resistance in Mycobacterium tuberculosis.
    Ahn JW; Kim KJ
    J Microbiol Biotechnol; 2013 Nov; 23(11):1529-35. PubMed ID: 23928847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran.
    Hasani A; Sheikhalizadeh V; Ahangarzadeh Rezaee M; Rahmati-Yamchi M; Hasani A; Ghotaslou R; Goli HR
    Microb Drug Resist; 2016 Jul; 22(5):347-53. PubMed ID: 26779992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tethered bisubstrate derivatives as probes for mechanism and as inhibitors of aminoglycoside 3'-phosphotransferases.
    Liu M; Haddad J; Azucena E; Kotra LP; Kirzhner M; Mobashery S
    J Org Chem; 2000 Nov; 65(22):7422-31. PubMed ID: 11076599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of a novel aminoglycoside phosphotransferase, APH(9)-Ic, and its variant from
    Shi W; Lu J; Feng C; Gao M; Li A; Liu S; Zhang L; Zhang X; Li Q; Lin H; Lin X; Li K; Zhang H; Hu Y; Wang G; Bao Q; Jiang W
    Front Cell Infect Microbiol; 2022; 12():1097561. PubMed ID: 36699730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasticity of Aminoglycoside Binding to Antibiotic Kinase APH(2″)-Ia.
    Caldwell SJ; Berghuis AM
    Antimicrob Agents Chemother; 2018 Jul; 62(7):. PubMed ID: 29661878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorinated aminoglycosides and their mechanistic implication for aminoglycoside 3'-phosphotransferases from Gram-negative bacteria.
    Kim C; Haddad J; Vakulenko SB; Meroueh SO; Wu Y; Yan H; Mobashery S
    Biochemistry; 2004 Mar; 43(9):2373-83. PubMed ID: 14992574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aminoglycoside antibiotic resistance by enzymatic deactivation.
    Smith CA; Baker EN
    Curr Drug Targets Infect Disord; 2002 Jun; 2(2):143-60. PubMed ID: 12462145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues.
    Boehr DD; Thompson PR; Wright GD
    J Biol Chem; 2001 Jun; 276(26):23929-36. PubMed ID: 11279088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revisiting the nucleotide and aminoglycoside substrate specificity of the bifunctional aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2'')-Ia enzyme.
    Frase H; Toth M; Vakulenko SB
    J Biol Chem; 2012 Dec; 287(52):43262-9. PubMed ID: 23115238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.