These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23758316)
1. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma. Mols M; Mastwijk H; Nierop Groot M; Abee T J Appl Microbiol; 2013 Sep; 115(3):689-702. PubMed ID: 23758316 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. van Bokhorst-van de Veen H; Xie H; Esveld E; Abee T; Mastwijk H; Nierop Groot M Food Microbiol; 2015 Feb; 45(Pt A):26-33. PubMed ID: 25481059 [TBL] [Abstract][Full Text] [Related]
3. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Wang Y; Liu Y; Zhao Y; Sun Y; Duan M; Wang H; Dai R; Liu Y; Li X; Jia F Food Res Int; 2023 Nov; 173(Pt 1):113204. PubMed ID: 37803533 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Winter T; Winter J; Polak M; Kusch K; Mäder U; Sietmann R; Ehlbeck J; van Hijum S; Weltmann KD; Hecker M; Kusch H Proteomics; 2011 Sep; 11(17):3518-30. PubMed ID: 21751354 [TBL] [Abstract][Full Text] [Related]
5. Oxygen and air cold plasma for the inactivation of Bacillus cereus in low-water activity soy powder. Teresa Fernández-Felipe M; Inés Valdez-Narváez M; Martinez A; Rodrigo D Food Res Int; 2024 Oct; 193():114861. PubMed ID: 39160048 [TBL] [Abstract][Full Text] [Related]
6. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas. Rosani U; Tarricone E; Venier P; Brun P; Deligianni V; Zuin M; Martines E; Leonardi A; Brun P PLoS One; 2015; 10(7):e0133173. PubMed ID: 26203910 [TBL] [Abstract][Full Text] [Related]
7. Microbial decontamination of red pepper powder by cold plasma. Kim JE; Lee DU; Min SC Food Microbiol; 2014 Apr; 38():128-36. PubMed ID: 24290635 [TBL] [Abstract][Full Text] [Related]
8. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Mols M; van Kranenburg R; van Melis CC; Moezelaar R; Abee T Environ Microbiol; 2010 Apr; 12(4):873-85. PubMed ID: 20074238 [TBL] [Abstract][Full Text] [Related]
9. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. Dezest M; Bulteau AL; Quinton D; Chavatte L; Le Bechec M; Cambus JP; Arbault S; Nègre-Salvayre A; Clément F; Cousty S PLoS One; 2017; 12(3):e0173618. PubMed ID: 28358809 [TBL] [Abstract][Full Text] [Related]
10. Influence of Gas Temperature in Atmospheric Non-Equilibrium Plasma on Bactericidal Effect. Kawano H; Takamatsu T; Matsumura Y; Miyahara H; Iwasawa A; Okino A Biocontrol Sci; 2018; 23(4):167-175. PubMed ID: 30584203 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of food pathogen Bacillus cereus by photosensitization in vitro and on the surface of packaging material. Luksiene Z; Buchovec I; Paskeviciute E J Appl Microbiol; 2009 Dec; 107(6):2037-46. PubMed ID: 19849812 [TBL] [Abstract][Full Text] [Related]
12. Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. Sharma A; Collins G; Pruden A J Appl Microbiol; 2009 Nov; 107(5):1440-9. PubMed ID: 19426273 [TBL] [Abstract][Full Text] [Related]
13. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Kim JE; Oh YJ; Won MY; Lee KS; Min SC Food Microbiol; 2017 Apr; 62():112-123. PubMed ID: 27889137 [TBL] [Abstract][Full Text] [Related]
14. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma. Winter T; Bernhardt J; Winter J; Mäder U; Schlüter R; Weltmann KD; Hecker M; Kusch H Proteomics; 2013 Sep; 13(17):2608-21. PubMed ID: 23794223 [TBL] [Abstract][Full Text] [Related]
15. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress. Babu MM; Sridhar J; Gunasekaran P J Nanobiotechnology; 2011 Nov; 9():49. PubMed ID: 22071005 [TBL] [Abstract][Full Text] [Related]
16. Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. Morris AD; McCombs GB; Akan T; Hynes W; Laroussi M; Tolle SL J Dent Hyg; 2009; 83(2):55-61. PubMed ID: 19470230 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging. Luksiene Z; Buchovec I; Paskeviciute E J Appl Microbiol; 2010 Nov; 109(5):1540-8. PubMed ID: 20557405 [TBL] [Abstract][Full Text] [Related]
18. Heat stress leads to superoxide formation in Bacillus cereus detected using the fluorescent probe MitoSOX. Mols M; Ceragioli M; Abee T Int J Food Microbiol; 2011 Nov; 151(1):119-22. PubMed ID: 21872960 [TBL] [Abstract][Full Text] [Related]
19. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Smet C; Noriega E; Rosier F; Walsh JL; Valdramidis VP; Van Impe JF Int J Food Microbiol; 2017 Jan; 240():47-56. PubMed ID: 27507138 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment. Thiyagarajan M; Sarani A; Gonzales XF Stud Health Technol Inform; 2013; 184():443-9. PubMed ID: 23400199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]