These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23758395)

  • 1. Self-assembly of binary nanoparticles on soft elastic shells.
    Jiang Y; Zhang D; Jin Y; Zhang L
    J Chem Phys; 2013 Jun; 138(21):214901. PubMed ID: 23758395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles.
    Mbenkum BN; Díaz-Ortiz A; Gu L; van Aken PA; Schütz G
    J Am Chem Soc; 2010 Aug; 132(31):10671-3. PubMed ID: 20681695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein adsorption and complement activation for di-block copolymer nanoparticles.
    Vauthier C; Persson B; Lindner P; Cabane B
    Biomaterials; 2011 Feb; 32(6):1646-56. PubMed ID: 21093043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and purification of nanoparticles in a single step.
    Hollamby MJ; Eastoe J; Chemelli A; Glatter O; Rogers S; Heenan RK; Grillo I
    Langmuir; 2010 May; 26(10):6989-94. PubMed ID: 20039604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of plutonium oxide nanoparticles.
    Schmidt M; Wilson RE; Lee SS; Soderholm L; Fenter P
    Langmuir; 2012 Feb; 28(5):2620-7. PubMed ID: 22216888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes.
    Chang CI; Lee WJ; Young TF; Ju SP; Chang CW; Chen HL; Chang JG
    J Chem Phys; 2008 Apr; 128(15):154703. PubMed ID: 18433254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidentate adsorbates for self-assembled monolayer films.
    Chinwangso P; Jamison AC; Lee TR
    Acc Chem Res; 2011 Jul; 44(7):511-9. PubMed ID: 21612198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size effects on adsorption of hematite nanoparticles on E. coli cells.
    Zhang W; Rittmann B; Chen Y
    Environ Sci Technol; 2011 Mar; 45(6):2172-8. PubMed ID: 21341780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of lipid liquid crystalline nanoparticles on cationic, hydrophilic, and hydrophobic surfaces.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    ACS Appl Mater Interfaces; 2012 May; 4(5):2643-51. PubMed ID: 22515950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation.
    Xu Z; Yang X; Yang Z
    Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, size control, surface deposition, and catalytic reactivity of hydrophobic corrolazine nanoparticles in an aqueous environment.
    Cho K; Kerber WD; Lee SR; Wan A; Batteas JD; Goldberg DP
    Inorg Chem; 2010 Sep; 49(18):8465-73. PubMed ID: 20735145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of interfacial properties of ferric (hydr)oxide nanoparticles by adsorption of fatty acids from aqueous solutions.
    Ponnurangam S; Chernyshova IV; Somasundaran P
    Langmuir; 2012 Jul; 28(29):10661-71. PubMed ID: 22694303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays.
    Lalander CH; Zheng Y; Dhuey S; Cabrini S; Bach U
    ACS Nano; 2010 Oct; 4(10):6153-61. PubMed ID: 20932055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.