These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23758432)

  • 1. Creating protein-imprinted self-assembled monolayers with multiple binding sites and biocompatible imprinted cavities.
    Zhang X; Du X; Huang X; Lv Z
    J Am Chem Soc; 2013 Jun; 135(25):9248-51. PubMed ID: 23758432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of glycoprotein imprinted self-assembled monolayers with dynamic boronate recognition sites and imprinted cavities for selective glycoprotein recognition.
    Zhang X; Du X
    Soft Matter; 2020 Mar; 16(12):3039-3049. PubMed ID: 32129364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular imprinting in monolayer surfaces.
    Balamurugan S; Spivak DA
    J Mol Recognit; 2011; 24(6):915-29. PubMed ID: 22038798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules.
    Suga Y; Sunayama H; Ooya T; Takeuchi T
    Chem Commun (Camb); 2013 Oct; 49(76):8450-2. PubMed ID: 23545783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding.
    Zheng H; Du X
    Biochim Biophys Acta; 2013 Feb; 1828(2):792-800. PubMed ID: 23159482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted protein recognition cavities bearing exchangeable binding sites for postimprinting site-directed introduction of reporter molecules for readout of binding events.
    Sunayama H; Takeuchi T
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20003-9. PubMed ID: 25393767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly imprinted tunable binding sites based on conjugated prosthetic groups and ion-paired cofactors.
    Takeda K; Kuwahara A; Ohmori K; Takeuchi T
    J Am Chem Soc; 2009 Jul; 131(25):8833-8. PubMed ID: 19496538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of protein-binding activities of molecularly imprinted polymers via post-imprinting modifications to exchange functional groups within the imprinted cavity.
    Sunayama H; Kitayama Y; Takeuchi T
    J Mol Recognit; 2018 Mar; 31(3):. PubMed ID: 28397380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of protein-polymer conjugates.
    Heredia KL; Maynard HD
    Org Biomol Chem; 2007 Jan; 5(1):45-53. PubMed ID: 17164904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S; Mizaikoff B
    Biosens Bioelectron; 2007 Sep; 23(2):201-9. PubMed ID: 17540554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of protein-imprinted polymers. 1. Imprinted pore properties.
    Levi L; Srebnik S
    J Phys Chem B; 2010 Jan; 114(1):107-14. PubMed ID: 19928872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin.
    Chou SK; Syu MJ
    Biomaterials; 2009 Mar; 30(7):1255-62. PubMed ID: 19100614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins.
    Siegers C; Biesalski M; Haag R
    Chemistry; 2004 Jun; 10(11):2831-8. PubMed ID: 15195314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective binding of carcinoembryonic antigen using imprinted polymeric hydrogels.
    Casey BJ; Kofinas P
    J Biomed Mater Res A; 2008 Nov; 87(2):359-63. PubMed ID: 18181111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.
    Chen G; Qiu J; Fang X; Xu J; Cai S; Chen Q; Liu Y; Zhu F; Ouyang G
    Chem Asian J; 2016 Aug; 11(16):2240-5. PubMed ID: 27411946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Self-assembled monolayers as model systems to study the relation between biocompatibity and surface chemistry of biomaterials].
    Luo X; Qiu Q; Luo J; Wang L; Zhang A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):697-700. PubMed ID: 17713292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein recognition via surface molecularly imprinted polymer nanowires.
    Li Y; Yang HH; You QH; Zhuang ZX; Wang XR
    Anal Chem; 2006 Jan; 78(1):317-20. PubMed ID: 16383343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale biomolecular structures on self-assembled monolayers generated from modular pegylated disulfides.
    Wong LS; Janusz SJ; Sun S; Leggett GJ; Micklefield J
    Chemistry; 2010 Oct; 16(40):12234-43. PubMed ID: 20839371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior.
    Li L; Chen S; Zheng J; Ratner BD; Jiang S
    J Phys Chem B; 2005 Feb; 109(7):2934-41. PubMed ID: 16851306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
    Yu C; Mosbach K
    J Mol Recognit; 1998; 11(1-6):69-74. PubMed ID: 10076809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.