BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23758617)

  • 1. Modulation of the intrinsic helix propensity of an intrinsically disordered protein reveals long-range helix-helix interactions.
    Iešmantavičius V; Jensen MR; Ozenne V; Blackledge M; Poulsen FM; Kjaergaard M
    J Am Chem Soc; 2013 Jul; 135(27):10155-63. PubMed ID: 23758617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helical propensity in an intrinsically disordered protein accelerates ligand binding.
    Iešmantavičius V; Dogan J; Jemth P; Teilum K; Kjaergaard M
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1548-51. PubMed ID: 24449148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.
    Rusinga FI; Weis DD
    Proteins; 2017 Aug; 85(8):1468-1479. PubMed ID: 28425679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins.
    Borcherds W; Kashtanov S; Wu H; Daughdrill GW
    Proteins; 2013 Oct; 81(10):1686-98. PubMed ID: 23606624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins.
    Newby FN; De Simone A; Yagi-Utsumi M; Salvatella X; Dobson CM; Vendruscolo M
    Biochemistry; 2015 Nov; 54(46):6876-86. PubMed ID: 26479087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.
    Jensen MR; Markwick PR; Meier S; Griesinger C; Zweckstetter M; Grzesiek S; Bernadó P; Blackledge M
    Structure; 2009 Sep; 17(9):1169-85. PubMed ID: 19748338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins.
    Hartlmüller C; Spreitzer E; Göbl C; Falsone F; Madl T
    J Biomol NMR; 2019 Jul; 73(6-7):305-317. PubMed ID: 31297688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and disorder in the ribonuclease S-peptide probed by NMR residual dipolar couplings.
    Alexandrescu AT; Kammerer RA
    Protein Sci; 2003 Oct; 12(10):2132-40. PubMed ID: 14500871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational entropy of intrinsically disordered protein.
    Chong SH; Ham S
    J Phys Chem B; 2013 May; 117(18):5503-9. PubMed ID: 23531173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-range, long-range and transition state interactions in the denatured state of ACBP from residual dipolar couplings.
    Fieber W; Kristjansdottir S; Poulsen FM
    J Mol Biol; 2004 Jun; 339(5):1191-9. PubMed ID: 15178258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range correlated dynamics in intrinsically disordered proteins.
    Parigi G; Rezaei-Ghaleh N; Giachetti A; Becker S; Fernandez C; Blackledge M; Griesinger C; Zweckstetter M; Luchinat C
    J Am Chem Soc; 2014 Nov; 136(46):16201-9. PubMed ID: 25331250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins.
    Lee C; Kalmar L; Xue B; Tompa P; Daughdrill GW; Uversky VN; Han KH
    Biochim Biophys Acta; 2014 Mar; 1840(3):993-1003. PubMed ID: 24211251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings.
    Mohana-Borges R; Goto NK; Kroon GJ; Dyson HJ; Wright PE
    J Mol Biol; 2004 Jul; 340(5):1131-42. PubMed ID: 15236972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for the coupling of alpha-helix and tertiary contact formation.
    Hausrath AC
    Protein Sci; 2006 Sep; 15(9):2051-61. PubMed ID: 16882994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of intrinsically disordered proteins by NMR spectroscopy.
    Kosol S; Contreras-Martos S; Cedeño C; Tompa P
    Molecules; 2013 Sep; 18(9):10802-28. PubMed ID: 24008243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of correlated conformational fluctuations in intrinsically disordered proteins through paramagnetic relaxation interference.
    Kurzbach D; Vanas A; Flamm AG; Tarnoczi N; Kontaxis G; Maltar-Strmečki N; Widder K; Hinderberger D; Konrat R
    Phys Chem Chem Phys; 2016 Feb; 18(8):5753-8. PubMed ID: 26411860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.
    English LR; Tilton EC; Ricard BJ; Whitten ST
    Proteins; 2017 Feb; 85(2):296-311. PubMed ID: 27936491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.