These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 23758851)

  • 1. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data.
    Wu G; Yustein JT; McCall MN; Zilliox M; Irizarry RA; Zeller K; Dang CV; Ji H
    Bioinformatics; 2013 May; 29(9):1182-9. PubMed ID: 23457041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor.
    Qin J; Li MJ; Wang P; Zhang MQ; Wang J
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W430-6. PubMed ID: 21586587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning position weight matrices from sequence and expression data.
    Chen X; Guo L; Fan Z; Jiang T
    Comput Syst Bioinformatics Conf; 2007; 6():249-60. PubMed ID: 17951829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data.
    Zhu LJ; Gazin C; Lawson ND; Pagès H; Lin SM; Lapointe DS; Green MR
    BMC Bioinformatics; 2010 May; 11():237. PubMed ID: 20459804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq).
    Zhu JY; Sun Y; Wang ZY
    Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TIP: a probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles.
    Cheng C; Min R; Gerstein M
    Bioinformatics; 2011 Dec; 27(23):3221-7. PubMed ID: 22039215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comprehensive transcriptional analysis in Caenorhabditis elegans by integrating ChIP-seq and gene expression data.
    He K; Shao J; Zhao Z; Liu D
    Genet Res (Camb); 2014; 96():e005. PubMed ID: 25023089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data.
    Chen X; Guo L; Fan Z; Jiang T
    Bioinformatics; 2008 May; 24(9):1121-8. PubMed ID: 18325926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data.
    O'Connor T; Bodén M; Bailey TL
    Nucleic Acids Res; 2017 Feb; 45(4):e19. PubMed ID: 28204599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data.
    Liu X; Jessen WJ; Sivaganesan S; Aronow BJ; Medvedovic M
    BMC Bioinformatics; 2007 Aug; 8():283. PubMed ID: 17683565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing computational methods for transcription factor target gene identification based on ChIP-seq data.
    Sikora-Wohlfeld W; Ackermann M; Christodoulou EG; Singaravelu K; Beyer A
    PLoS Comput Biol; 2013; 9(11):e1003342. PubMed ID: 24278002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis.
    Rautio S; Lähdesmäki H
    BMC Bioinformatics; 2015 Dec; 16():413. PubMed ID: 26703974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.