These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23758877)

  • 1. Comparing somatic mutation-callers: beyond Venn diagrams.
    Kim SY; Speed TP
    BMC Bioinformatics; 2013 Jun; 14():189. PubMed ID: 23758877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and reproducibility of somatic point mutation calling in clinical-type targeted sequencing data.
    Karimnezhad A; Palidwor GA; Thavorn K; Stewart DJ; Campbell PA; Lo B; Perkins TJ
    BMC Med Genomics; 2020 Oct; 13(1):156. PubMed ID: 33059707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.
    Krøigård AB; Thomassen M; Lænkholm AV; Kruse TA; Larsen MJ
    PLoS One; 2016; 11(3):e0151664. PubMed ID: 27002637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated somatic mutation calling for whole-genome and whole-exome sequencing data from heterogenous tumor samples.
    Ji S; Zhu T; Sethia A; Wang W
    Genome Res; 2024 May; 34(4):633-641. PubMed ID: 38589250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining calls from multiple somatic mutation-callers.
    Kim SY; Jacob L; Speed TP
    BMC Bioinformatics; 2014 May; 15():154. PubMed ID: 24885750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating somatic tumor mutation detection without matched normal samples.
    Teer JK; Zhang Y; Chen L; Welsh EA; Cress WD; Eschrich SA; Berglund AE
    Hum Genomics; 2017 Sep; 11(1):22. PubMed ID: 28870239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.
    Ellrott K; Bailey MH; Saksena G; Covington KR; Kandoth C; Stewart C; Hess J; Ma S; Chiotti KE; McLellan M; Sofia HJ; Hutter C; Getz G; Wheeler D; Ding L; ;
    Cell Syst; 2018 Mar; 6(3):271-281.e7. PubMed ID: 29596782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SomaticCombiner: improving the performance of somatic variant calling based on evaluation tests and a consensus approach.
    Wang M; Luo W; Jones K; Bian X; Williams R; Higson H; Wu D; Hicks B; Yeager M; Zhu B
    Sci Rep; 2020 Jul; 10(1):12898. PubMed ID: 32732891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers.
    Callari M; Sammut SJ; De Mattos-Arruda L; Bruna A; Rueda OM; Chin SF; Caldas C
    Genome Med; 2017 Apr; 9(1):35. PubMed ID: 28420412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shimmer: detection of genetic alterations in tumors using next-generation sequence data.
    Hansen NF; Gartner JJ; Mei L; Samuels Y; Mullikin JC
    Bioinformatics; 2013 Jun; 29(12):1498-503. PubMed ID: 23620360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple combination of multiple somatic variant callers to increase accuracy.
    Trevarton AJ; Chang JT; Symmans WF
    Sci Rep; 2023 May; 13(1):8463. PubMed ID: 37231022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data.
    Cai L; Yuan W; Zhang Z; He L; Chou KC
    Sci Rep; 2016 Nov; 6():36540. PubMed ID: 27874022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNN-Boost: Somatic mutation identification of tumor-only whole-exome sequencing data using deep neural network and XGBoost.
    Maruf FA; Pratama R; Song G
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140017. PubMed ID: 34895111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble-Based Somatic Mutation Calling in Cancer Genomes.
    Huang W; Guo YA; Chang MM; Skanderup AJ
    Methods Mol Biol; 2020; 2120():37-46. PubMed ID: 32124310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISOWN: accurate somatic mutation identification in the absence of normal tissue controls.
    Kalatskaya I; Trinh QM; Spears M; McPherson JD; Bartlett JMS; Stein L
    Genome Med; 2017 Jun; 9(1):59. PubMed ID: 28659176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. isma: an R package for the integrative analysis of mutations detected by multiple pipelines.
    Di Nanni N; Moscatelli M; Gnocchi M; Milanesi L; Mosca E
    BMC Bioinformatics; 2019 Feb; 20(1):107. PubMed ID: 30819096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the performance of selected variant callers using synthetic data and genome segmentation.
    Bian X; Zhu B; Wang M; Hu Y; Chen Q; Nguyen C; Hicks B; Meerzaman D
    BMC Bioinformatics; 2018 Nov; 19(1):429. PubMed ID: 30453880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.