These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23758881)

  • 1. Towards identification of finger flexions using single channel surface electromyography--able bodied and amputee subjects.
    Kumar DK; Poosapadi Arjunan S; Singh VP
    J Neuroeng Rehabil; 2013 Jun; 10():50. PubMed ID: 23758881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.
    Arjunan SP; Kumar DK
    J Neuroeng Rehabil; 2010 Oct; 7():53. PubMed ID: 20964863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines.
    Arjunan SP; Kumar DK; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4821-4. PubMed ID: 21097298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings.
    Dai C; Hu X
    Int J Neural Syst; 2019 Feb; 29(1):1850025. PubMed ID: 29954235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal.
    Arjunan SP; Kumar DK; Jayadeva J
    Biomed Tech (Berl); 2016 Feb; 61(1):87-94. PubMed ID: 26354833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning approach to identify hand actions from single-channel sEMG signals.
    Savithri CN; Priya E; Rajasekar K
    Biomed Tech (Berl); 2022 Apr; 67(2):89-103. PubMed ID: 35191277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal feature of sEMG from Flexor digitorum superficialis muscle correlated with levels of contraction during low-level finger flexions.
    Arjunan SP; Kumar DK; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4614-7. PubMed ID: 21096230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary investigation assessing the viability of classifying hand postures in seniors.
    Tavakolan M; Xiao ZG; Menon C
    Biomed Eng Online; 2011 Sep; 10():79. PubMed ID: 21906316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sEMG-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee.
    Kim J; Yang S; Koo B; Lee S; Park S; Kim S; Cho KH; Kim Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finger Movement Recognition via High-Density Electromyography of Intrinsic and Extrinsic Hand Muscles.
    Hu X; Song A; Wang J; Zeng H; Wei W
    Sci Data; 2022 Jun; 9(1):373. PubMed ID: 35768439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous grip force estimation from surface electromyography using generalized regression neural network.
    Mao H; Fang P; Zheng Y; Tian L; Li X; Wang P; Peng L; Li G
    Technol Health Care; 2023; 31(2):675-689. PubMed ID: 36120747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
    Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonnegative matrix factorization for the identification of EMG finger movements: evaluation using matrix analysis.
    Naik GR; Nguyen HT
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):478-485. PubMed ID: 25486650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation.
    Potluri C; Anugolu M; Schoen MP; Subbaram Naidu D; Urfer A; Chiu S
    Comput Biol Med; 2013 Nov; 43(11):1815-26. PubMed ID: 24209927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of hand and finger movements using multi run ICA of surface electromyogram.
    Naik GR; Kumar DK
    J Med Syst; 2012 Apr; 36(2):841-51. PubMed ID: 20703649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel energy-motion model for continuous sEMG decoding: from muscle energy to motor pattern.
    Liu G; Wang L; Wang J
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33022663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.