BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23759098)

  • 1. Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.
    Koen E; Besson-Bard A; Duc C; Astier J; Gravot A; Richaud P; Lamotte O; Boucherez J; Gaymard F; Wendehenne D
    Plant Sci; 2013 Aug; 209():1-11. PubMed ID: 23759098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses.
    Klatte M; Schuler M; Wirtz M; Fink-Straube C; Hell R; Bauer P
    Plant Physiol; 2009 May; 150(1):257-71. PubMed ID: 19304929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcription factor bZIP44 cooperates with MYB10 and MYB72 to regulate the response of Arabidopsis thaliana to iron deficiency stress.
    Wu X; Jia Y; Ma Q; Wang T; Xu J; Chen H; Wang M; Song H; Cao S
    New Phytol; 2024 Jun; 242(6):2586-2603. PubMed ID: 38523234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana.
    Pianelli K; Mari S; Marquès L; Lebrun M; Czernic P
    Transgenic Res; 2005 Oct; 14(5):739-48. PubMed ID: 16245165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.
    Cornu JY; Deinlein U; Höreth S; Braun M; Schmidt H; Weber M; Persson DP; Husted S; Schjoerring JK; Clemens S
    New Phytol; 2015 Apr; 206(2):738-50. PubMed ID: 25545296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine.
    Cassin G; Mari S; Curie C; Briat JF; Czernic P
    J Exp Bot; 2009; 60(4):1249-59. PubMed ID: 19188276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level.
    Aksoy E; Jeong IS; Koiwa H
    Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants.
    Kim S; Takahashi M; Higuchi K; Tsunoda K; Nakanishi H; Yoshimura E; Mori S; Nishizawa NK
    Plant Cell Physiol; 2005 Nov; 46(11):1809-18. PubMed ID: 16143596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.
    Wu TY; Gruissem W; Bhullar NK
    Plant Sci; 2018 May; 270():13-22. PubMed ID: 29576065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis.
    Rogers EE; Guerinot ML
    Plant Cell; 2002 Aug; 14(8):1787-99. PubMed ID: 12172022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions.
    Pavlovic J; Samardzic J; Kostic L; Laursen KH; Natic M; Timotijevic G; Schjoerring JK; Nikolic M
    Ann Bot; 2016 Aug; 118(2):271-80. PubMed ID: 27371693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.
    Le Jean M; Schikora A; Mari S; Briat JF; Curie C
    Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotianamine in zinc and iron homeostasis.
    Hofmann NR
    Plant Cell; 2012 Feb; 24(2):373. PubMed ID: 22374391
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.