BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 23759102)

  • 1. A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings.
    Chen IJ; Lo WS; Chuang JY; Cheuh CM; Fan YS; Lin LC; Wu SJ; Wang LC
    Plant Sci; 2013 Aug; 209():46-57. PubMed ID: 23759102
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gu SY; Wang LC; Cheuh CM; Lo WS
    Front Plant Sci; 2019; 10():600. PubMed ID: 31156671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene Regulates the Arabidopsis Microtubule-Associated Protein WAVE-DAMPENED2-LIKE5 in Etiolated Hypocotyl Elongation.
    Sun J; Ma Q; Mao T
    Plant Physiol; 2015 Sep; 169(1):325-37. PubMed ID: 26134166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation.
    Liang X; Wang H; Mao L; Hu Y; Dong T; Zhang Y; Wang X; Bi Y
    Planta; 2012 Dec; 236(6):1791-802. PubMed ID: 22890836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TR-DB: an open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis.
    Hu Y; Callebert P; Vandemoortel I; Nguyen L; Audenaert D; Verschraegen L; Vandenbussche F; Van Der Straeten D
    Plant Physiol Biochem; 2014 Feb; 75():128-37. PubMed ID: 24441765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced stabilization of ACS contributes to hypocotyl elongation during the dark-to-light transition in Arabidopsis seedlings.
    Seo DH; Yoon GM
    Plant J; 2019 Jun; 98(5):898-911. PubMed ID: 30776167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genetic dissection of brassinosteroid-ethylene interaction.
    Gendron JM; Haque A; Gendron N; Chang T; Asami T; Wang ZY
    Mol Plant; 2008 Mar; 1(2):368-79. PubMed ID: 19825546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis.
    Kumar KRR; Blomberg J; Björklund S
    Plant J; 2018 Nov; 96(3):578-594. PubMed ID: 30058106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Triple Response Assay and Its Use to Characterize Ethylene Mutants in Arabidopsis.
    Merchante C; Stepanova AN
    Methods Mol Biol; 2017; 1573():163-209. PubMed ID: 28293847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating
    Lian N; Liu X; Wang X; Zhou Y; Li H; Li J; Mao T
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12321-12326. PubMed ID: 29087315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl.
    De Grauwe L; Vandenbussche F; Tietz O; Palme K; Van Der Straeten D
    Plant Cell Physiol; 2005 Jun; 46(6):827-36. PubMed ID: 15851402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways.
    Castillo MC; Coego A; Costa-Broseta Á; León J
    J Exp Bot; 2018 Oct; 69(21):5265-5278. PubMed ID: 30085082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.
    Peng H; Zhao J; Neff MM
    Development; 2015 Dec; 142(23):4129-38. PubMed ID: 26493403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6.
    Desprez T; Vernhettes S; Fagard M; Refrégier G; Desnos T; Aletti E; Py N; Pelletier S; Höfte H
    Plant Physiol; 2002 Feb; 128(2):482-90. PubMed ID: 11842152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choline transporter-like 1 (CTL1) positively regulates apical hook development in etiolated Arabidopsis seedlings.
    Cai G; Wang Y; Yan W; Luan S; Lan W
    Biochem Biophys Res Commun; 2020 Apr; 525(2):491-497. PubMed ID: 32111354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis.
    Lv B; Tian H; Zhang F; Liu J; Lu S; Bai M; Li C; Ding Z
    PLoS Genet; 2018 Jan; 14(1):e1007144. PubMed ID: 29324765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis.
    Robles LM; Deslauriers SD; Alvarez AA; Larsen PB
    J Exp Bot; 2012 Mar; 63(5):2231-41. PubMed ID: 22238449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light.
    Stamm P; Kumar PP
    Plant Cell Rep; 2013 Jun; 32(6):759-69. PubMed ID: 23503980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase.
    Woeste KE; Ye C; Kieber JJ
    Plant Physiol; 1999 Feb; 119(2):521-30. PubMed ID: 9952448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.