BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 23759104)

  • 1. The role of CORYMBOSA1/BIG and auxin in the growth of Arabidopsis pedicel and internode.
    Yamaguchi N; Komeda Y
    Plant Sci; 2013 Aug; 209():64-74. PubMed ID: 23759104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants.
    Zhong R; Ye ZH
    Plant Physiol; 2001 Jun; 126(2):549-63. PubMed ID: 11402186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis.
    Kim B; Kim G; Fujioka S; Takatsuto S; Choe S
    Mol Cells; 2012 Jul; 34(1):77-84. PubMed ID: 22673766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.
    López-Bucio J; Hernández-Abreu E; Sánchez-Calderón L; Pérez-Torres A; Rampey RA; Bartel B; Herrera-Estrella L
    Plant Physiol; 2005 Feb; 137(2):681-91. PubMed ID: 15681664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport.
    Kaneda M; Schuetz M; Lin BS; Chanis C; Hamberger B; Western TL; Ehlting J; Samuels AL
    J Exp Bot; 2011 Mar; 62(6):2063-77. PubMed ID: 21239383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis.
    Brown DE; Rashotte AM; Murphy AS; Normanly J; Tague BW; Peer WA; Taiz L; Muday GK
    Plant Physiol; 2001 Jun; 126(2):524-35. PubMed ID: 11402184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development.
    Gao Y; Zhang Y; Zhang D; Dai X; Estelle M; Zhao Y
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2275-80. PubMed ID: 25646447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of vascular development in the hydra sterol biosynthetic mutants of Arabidopsis.
    Pullen M; Clark N; Zarinkamar F; Topping J; Lindsey K
    PLoS One; 2010 Aug; 5(8):e12227. PubMed ID: 20808926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division.
    Magyar Z; De Veylder L; Atanassova A; Bakó L; Inzé D; Bögre L
    Plant Cell; 2005 Sep; 17(9):2527-41. PubMed ID: 16055635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis.
    Liu M; Xu R; Merrill C; Hong L; Von Lanken C; Hunt AG; Li QQ
    PLoS One; 2014; 9(12):e115779. PubMed ID: 25546057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem.
    Hall H; Ellis B
    BMC Plant Biol; 2013 Jan; 13():14. PubMed ID: 23350960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems.
    Tamaoki D; Karahara I; Nishiuchi T; Wakasugi T; Yamada K; Kamisaka S
    J Exp Bot; 2011 Nov; 62(15):5463-9. PubMed ID: 21841171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport.
    Holweg C; Nick P
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10488-93. PubMed ID: 15240891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomato
    Zhao X; Zhang K; Zhang H; Bi M; He Y; Cui Y; Tan C; Ma J; Qi M
    Front Plant Sci; 2023; 14():1283489. PubMed ID: 38078095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Found: The missing discriminators of cell-surface auxin receptors.
    Murphy AS; Jones AM
    Cell; 2023 Dec; 186(25):5438-5439. PubMed ID: 38065077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering transcriptional mechanisms of maize internodal elongation by regulatory network analysis.
    Ren Z; Liu Y; Li L; Wang X; Zhou Y; Zhang M; Li Z; Yi F; Duan L
    J Exp Bot; 2023 Aug; 74(15):4503-4519. PubMed ID: 37170764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular responses to auxin: division versus expansion.
    Perrot-Rechenmann C
    Cold Spring Harb Perspect Biol; 2010 May; 2(5):a001446. PubMed ID: 20452959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shade signals alter the expression of circadian clock genes in newly-formed bioenergy sorghum internodes.
    Kebrom TH; McKinley BA; Mullet JE
    Plant Direct; 2020 Jun; 4(6):e00235. PubMed ID: 32607464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Small Auxin-Up RNA
    Huang X; Lu Z; Zhai L; Li N; Yan H
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making connections with cell surface auxin signaling.
    Murphy AS
    Mol Plant; 2024 Apr; 17(4):522-524. PubMed ID: 38368508
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.