These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23759381)

  • 41. The use of agar as a novel filler for monolithic matrices produced using hot melt extrusion.
    Lyons JG; Devine DM; Kennedy JE; Geever LM; O'Sullivan P; Higginbotham CL
    Eur J Pharm Biopharm; 2006 Aug; 64(1):75-81. PubMed ID: 16697170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion.
    Albers J; Alles R; Matthée K; Knop K; Nahrup JS; Kleinebudde P
    Eur J Pharm Biopharm; 2009 Feb; 71(2):387-94. PubMed ID: 18951978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets.
    Schilling SU; Bruce CD; Shah NH; Malick AW; McGinity JW
    Int J Pharm; 2008 Sep; 361(1-2):158-68. PubMed ID: 18582547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Development of Direct Extrusion-Injection Moulded Zein Matrices as Novel Oral Controlled Drug Delivery Systems.
    Bouman J; Belton P; Venema P; van der Linden E; de Vries R; Qi S
    Pharm Res; 2015 Aug; 32(8):2775-86. PubMed ID: 25777612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hot-melt extrusion based sustained release ibrutinib delivery system: An inhibitor of Bruton's Tyrosine Kinase (BTK).
    Alshahrouri B; Yang F; Schwing Q; Dürig T; Fassihi R
    Int J Pharm; 2021 Sep; 607():120981. PubMed ID: 34371149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Abuse-Deterrent Characteristics of Tablets Prepared via Hot-Melt Extrusion.
    Xu X; Siddiqui A; Srinivasan C; Mohammad A; Rahman Z; Korang-Yeboah M; Feng X; Khan M; Ashraf M
    AAPS PharmSciTech; 2019 Jun; 20(6):230. PubMed ID: 31227939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices.
    Dierickx L; Saerens L; Almeida A; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Aug; 81(3):683-9. PubMed ID: 22504402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vacuum Compression Molding as a Screening Tool to Investigate Carrier Suitability for Hot-Melt Extrusion Formulations.
    Shadambikar G; Kipping T; Di-Gallo N; Elia AG; Knüttel AN; Treffer D; Repka MA
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33114382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder.
    Haupt M; Thommes M; Heidenreich A; Breitkreutz J
    J Control Release; 2013 Sep; 170(2):161-6. PubMed ID: 23732944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.
    Yi T; Wan J; Xu H; Yang X
    Eur J Pharm Sci; 2008 Aug; 34(4-5):274-80. PubMed ID: 18541418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of sustained-release formulations processed by hot-melt extrusion by using a quality-by-design approach.
    Islam MT; Maniruzzaman M; Halsey SA; Chowdhry BZ; Douroumis D
    Drug Deliv Transl Res; 2014 Aug; 4(4):377-87. PubMed ID: 25787069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions.
    Maniruzzaman M; Morgan DJ; Mendham AP; Pang J; Snowden MJ; Douroumis D
    Int J Pharm; 2013 Feb; 443(1-2):199-208. PubMed ID: 23262428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations.
    Almeida A; Saerens L; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2012 Dec; 439(1-2):223-9. PubMed ID: 23018111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of squalane on mebendazole-loaded Compritol® nanoparticles.
    Graves RA; Ledet GA; Nation CA; Pramar YV; Bostanian LA; Mandal TK
    J Biomater Sci Polym Ed; 2015; 26(13):868-80. PubMed ID: 26062393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables.
    Das S; Ng WK; Kanaujia P; Kim S; Tan RB
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):483-9. PubMed ID: 21831615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanistic evaluation of the effect of sintering on Compritol 888 ATO matrices.
    Rao M; Ranpise A; Borate S; Thanki K
    AAPS PharmSciTech; 2009; 10(2):355-60. PubMed ID: 19333763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Properties of sustained release hot-melt extruded tablets containing chitosan and xanthan gum.
    Fukuda M; Peppas NA; McGinity JW
    Int J Pharm; 2006 Mar; 310(1-2):90-100. PubMed ID: 16413153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties of melt extruded enteric matrix pellets.
    Schilling SU; Shah NH; Waseem Malick A; McGinity JW
    Eur J Pharm Biopharm; 2010 Feb; 74(2):352-61. PubMed ID: 19782133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot melt coating technology: influence of Compritol 888 Ato and granule size on chloroquine release.
    Faham A; Prinderre P; Piccerelle P; Farah N; Joachim J
    Pharmazie; 2000 Jun; 55(6):444-8. PubMed ID: 10907253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Citric acid as a solid-state plasticizer for Eudragit RS PO.
    Schilling SU; Shah NH; Malick AW; Infeld MH; McGinity JW
    J Pharm Pharmacol; 2007 Nov; 59(11):1493-500. PubMed ID: 17976259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.