BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23759730)

  • 21. Genetics and Biology of Pancreatic Ductal Adenocarcinoma.
    Dunne RF; Hezel AF
    Hematol Oncol Clin North Am; 2015 Aug; 29(4):595-608. PubMed ID: 26226899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens.
    Hosoda W; Sasaki E; Murakami Y; Yamao K; Shimizu Y; Yatabe Y
    Pathol Int; 2013 Mar; 63(3):176-82. PubMed ID: 23530562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A genetically engineered mouse model developing rapid progressive pancreatic ductal adenocarcinoma.
    Yamaguchi T; Ikehara S; Nakanishi H; Ikehara Y
    J Pathol; 2014 Oct; 234(2):228-38. PubMed ID: 25042889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pancreatic cancer development and progression: remodeling the model.
    Real FX; Cibrián-Uhalte E; Martinelli P
    Gastroenterology; 2008 Sep; 135(3):724-8. PubMed ID: 18692502
    [No Abstract]   [Full Text] [Related]  

  • 25. KRAS Mutations With No GNAS Mutations in an Intraductal Papillary Mucinous Neoplasm: Are There Common Pathways With Pancreatic Ductal Adenocarcinoma? Lessons From an Extended IPMN, Covering the Entire Pancreas.
    Tampakis A; Tampaki EC; Posabella A; Zettl A; Kouraklis G; von Flüe M; Guenin MO
    Pancreas; 2017 Jan; 46(1):e5-e7. PubMed ID: 27977634
    [No Abstract]   [Full Text] [Related]  

  • 26. Molecular pathology of primary and metastatic ductal pancreatic lesions: analyses of mutations and expression of the p53, mdm-2, and p21/WAF-1 genes in sporadic and familial lesions.
    Ruggeri BA; Huang L; Berger D; Chang H; Klein-Szanto AJ; Goodrow T; Wood M; Obara T; Heath CW; Lynch H
    Cancer; 1997 Feb; 79(4):700-16. PubMed ID: 9024708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NR5A2 discovering compounds that block tumor growth in PDAC.
    Fletterick R
    J Surg Oncol; 2017 Jul; 116(1):89-93. PubMed ID: 28445593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atypical flat lesions derive from pancreatic acinar cells.
    von Figura G; Fahrenkrog-Petersen L; Hidalgo-Sastre A; Hartmann D; Hüser N; Schmid RM; Hebrok M; Roy N; Esposito I
    Pancreatology; 2017; 17(3):350-353. PubMed ID: 28473229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnostic approach to pancreatic tumors with the specimens of endoscopic ultrasound-guided fine needle aspiration.
    Hosoda W; Takagi T; Mizuno N; Shimizu Y; Sano T; Yamao K; Yatabe Y
    Pathol Int; 2010 May; 60(5):358-64. PubMed ID: 20518885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low value of detection of KRAS2 mutations in circulating DNA to differentiate chronic pancreatitis to pancreatic cancer.
    Marchese R; Muleti A; Brozzetti S; Gandini O; Brunetti E; French D
    Br J Cancer; 2004 Jun; 90(11):2243. PubMed ID: 15150585
    [No Abstract]   [Full Text] [Related]  

  • 31. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.
    Lubeseder-Martellato C; Alexandrow K; Hidalgo-Sastre A; Heid I; Boos SL; Briel T; Schmid RM; Siveke JT
    EBioMedicine; 2017 Feb; 15():90-99. PubMed ID: 28057438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mutant K-ras gene in pathogenesis of pancreatic ductal adenocarcinoma].
    Guan J; Chen J
    Zhonghua Bing Li Xue Za Zhi; 2012 Jan; 41(1):62-5. PubMed ID: 22455858
    [No Abstract]   [Full Text] [Related]  

  • 33. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.
    Wauters E; Sanchez-Arévalo Lobo VJ; Pinho AV; Mawson A; Herranz D; Wu J; Cowley MJ; Colvin EK; Njicop EN; Sutherland RL; Liu T; Serrano M; Bouwens L; Real FX; Biankin AV; Rooman I
    Cancer Res; 2013 Apr; 73(7):2357-67. PubMed ID: 23370328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.
    Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX
    Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.
    Grippo PJ; Sandgren EP
    Int J Cancer; 2012 Sep; 131(5):1243-8. PubMed ID: 22024988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acinar Cell-Enriched-MicroRNA-802 Connects the Dots Between Kras Signaling, Acinar Ductal Metaplasia, and Pancreatic Cancer.
    Schmittgen TD; Sempere LF
    Gastroenterology; 2022 Jan; 162(1):48-50. PubMed ID: 34662582
    [No Abstract]   [Full Text] [Related]  

  • 37. Somatostatin receptor subtype 2 as pancreatic tumorigenesis suppressor: identification of a new targetable signaling node.
    Crawford HC
    Gastroenterology; 2015 Jun; 148(7):1279-81. PubMed ID: 25921374
    [No Abstract]   [Full Text] [Related]  

  • 38. Detection of K-ras point mutation at codon 12 in pancreatic diseases: a study in a Brazilian casuistic.
    Kubrusly MS; Cunha JE; Bacchella T; Abdo EE; Jukemura J; Penteado S; Morioka CY; de Souza LJ; Machado MC
    JOP; 2002 Sep; 3(5):144-51. PubMed ID: 12221329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What we have learned about pancreatic cancer from mouse models.
    Pérez-Mancera PA; Guerra C; Barbacid M; Tuveson DA
    Gastroenterology; 2012 May; 142(5):1079-92. PubMed ID: 22406637
    [No Abstract]   [Full Text] [Related]  

  • 40. Heterogeneity of KRAS Mutations in Pancreatic Ductal Adenocarcinoma.
    Hashimoto D; Arima K; Yokoyama N; Chikamoto A; Taki K; Inoue R; Kaida T; Higashi T; Nitta H; Ohmuraya M; Hirota M; Beppu T; Baba H
    Pancreas; 2016 Sep; 45(8):1111-4. PubMed ID: 26967456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.