These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23759838)

  • 1. Approximation of normalized point source sensitivity using power spectral density and slopes of wavefront aberration.
    Seo BJ; Nissly C; Troy M; Angeli G; Ford V; Stepp L; Williams E
    Appl Opt; 2013 Jun; 52(17):3910-22. PubMed ID: 23759838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of normalized point-source sensitivity of segment surface specifications for extremely large telescopes.
    Seo BJ; Nissly C; Troy M; Angeli G; Bernier R; Stepp L; Williams E
    Appl Opt; 2013 Jun; 52(18):4111-22. PubMed ID: 23842151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of normalized point source sensitivity as a performance metric for large telescopes.
    Seo BJ; Nissly C; Angeli G; Ellerbroek B; Nelson J; Sigrist N; Troy M
    Appl Opt; 2009 Nov; 48(31):5997-6007. PubMed ID: 19881667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relay optical function and pre-construction results of a Giant Steerable Science Mirror for a thirty meter telescope.
    Fei Y; Xuejun Z; Hongchao Z; Qichang A; Peng G; Haibo J; Haifeng C; Pengfei G; Xiao L; Erhui Q; Haifei H; Haixiang H; Jing Z; Chylek T; Cole G; Cho M; Smith B; Campbell M
    Opt Express; 2019 May; 27(10):13991-14008. PubMed ID: 31163855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ritchey-Common sparse-aperture testing of the Giant Steerable Science Mirror.
    An Q; Zhang J; Yang F; Zhao H; Cao H
    Appl Opt; 2018 Sep; 57(27):7764-7769. PubMed ID: 30462039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric layout optimization of a large aperture thin elliptical mirror's axial and lateral support.
    Guo P; Zhang J; Yang F; Hu H; Jiang H
    Appl Opt; 2021 Apr; 60(10):2861-2869. PubMed ID: 33798165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active compensation for optimal RMS wavefront error in perturbed off-axis optical telescopes using nodal aberration theory.
    Wen M; Han C; Ma H
    Appl Opt; 2021 Feb; 60(6):1790-1800. PubMed ID: 33690520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical design and intensity interferometry simulations in support of the Kilometer Space Telescope.
    Johnson TP; Crowe DG
    Appl Opt; 2021 Apr; 60(12):3464-3473. PubMed ID: 33983253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantages and limitations of the 'worst case scenario' approach in IMPT treatment planning.
    Casiraghi M; Albertini F; Lomax AJ
    Phys Med Biol; 2013 Mar; 58(5):1323-39. PubMed ID: 23391569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrations for grazing incidence telescopes.
    Saha TT
    Appl Opt; 1988 Apr; 27(8):1492-8. PubMed ID: 20531603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.
    Hoyo JD; Choi H; Burge JH; Kim GH; Kim DW
    Appl Opt; 2017 Jun; 56(18):5258-5267. PubMed ID: 29047579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-order aberration correction of the TMT tertiary mirror prototype based on a warping harness.
    Han L; Liu C; Fan C; Li Z; Zhang J; Yin X
    Appl Opt; 2018 Mar; 57(7):1662-1670. PubMed ID: 29522017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Method of Measuring Wavefront Aberration Based on Image with Machine Learning in Free Space Optical Communication.
    Xu Y; He D; Wang Q; Guo H; Li Q; Xie Z; Huang Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal wavefront control for adaptive segmented mirrors.
    Downie JD; Goodman JW
    Appl Opt; 1989 Dec; 28(24):5326-32. PubMed ID: 20556049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The statistics of refractive error maps: managing wavefront aberration analysis without Zernike polynomials.
    Iskander DR; Nam J; Thibos LN
    Ophthalmic Physiol Opt; 2009 May; 29(3):292-9. PubMed ID: 19422561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberration theory of plane-symmetric grating systems.
    Lu LJ
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):399-410. PubMed ID: 18552434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual acuity and optical parameters in progressive-power lenses.
    Villegas EA; Artal P
    Optom Vis Sci; 2006 Sep; 83(9):672-81. PubMed ID: 16971846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of coupling between optical aberration and tilt-to-length noise in a space-based gravitational wave telescope.
    Lin H; Li J; Huang Y; Yu M; Luo J; Wang Z; Wu Y
    Opt Express; 2023 Jan; 31(3):4367-4378. PubMed ID: 36785407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes.
    Schmid T; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D131-44. PubMed ID: 20517355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.