BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 23759941)

  • 1. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases.
    Takahashi K
    Proc Jpn Acad Ser B Phys Biol Sci; 2013; 89(6):201-25. PubMed ID: 23759941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonuclease T1 is active when both catalytic histidines are replaced by aspartate.
    Landt O; Thölke J; Grunert HP; Saenger W; Hahn U
    Biol Chem; 1997 Jun; 378(6):553-8. PubMed ID: 9224937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1.
    Giletto A; Pace CN
    Biochemistry; 1999 Oct; 38(40):13379-84. PubMed ID: 10529213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stabilization of ribonuclease T1 by carboxymethylation at Glu-58 as revealed by 1H nuclear magnetic resonance spectroscopy.
    Kojima M; Mizukoshi T; Miyano H; Suzuki E; Tanokura M; Takahashi K
    FEBS Lett; 1994 Sep; 351(3):389-92. PubMed ID: 7915996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the catalytic mechanism of a glutamic peptidase.
    Kondo MY; Okamoto DN; Santos JA; Juliano MA; Oda K; Pillai B; James MN; Juliano L; Gouvea IE
    J Biol Chem; 2010 Jul; 285(28):21437-45. PubMed ID: 20442413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of linker sequence on the stability of circularly permuted variants of ribonuclease T1.
    Garrett JB; Mullins LS; Raushel FM
    Bioorg Chem; 2003 Oct; 31(5):412-24. PubMed ID: 12941293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Modeling the Reaction Mechanism of Serine-Carboxyl Peptidases.
    Bravaya K; Bochenkova A; Grigorenko B; Topol I; Burt S; Nemukhin A
    J Chem Theory Comput; 2006 Jul; 2(4):1168-75. PubMed ID: 26633073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peptidases from fungi and viruses.
    James MN
    Biol Chem; 2006 Aug; 387(8):1023-9. PubMed ID: 16895471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of guanine recognition and a phosphate group subsite on ribonuclease T1 using substitution mutants at Glu46 and Lys41.
    Jo Chitester B; Walz FG
    Arch Biochem Biophys; 2002 Oct; 406(1):73-7. PubMed ID: 12234492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity.
    Chen DT; Lin A
    Protein Eng; 2002 Dec; 15(12):997-1003. PubMed ID: 12601139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases.
    Oda K
    J Biochem; 2012 Jan; 151(1):13-25. PubMed ID: 22016395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
    Ekici OD; Paetzel M; Dalbey RE
    Protein Sci; 2008 Dec; 17(12):2023-37. PubMed ID: 18824507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of peptidase category based on functional domain composition.
    Xu X; Yu D; Fang W; Cheng Y; Qian Z; Lu W; Cai Y; Feng K
    J Proteome Res; 2008 Oct; 7(10):4521-4. PubMed ID: 18763822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of peptidases secreted by filamentous fungi.
    Hamin Neto YAA; da Rosa Garzon NG; Pedezzi R; Cabral H
    Bioengineered; 2018 Jan; 9(1):30-37. PubMed ID: 28857638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of ribonuclease T1 with ozone.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1978 Mar; 83(3):771-81. PubMed ID: 417075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1.
    Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J
    Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A.
    Nishikawa S; Morioka H; Kim HJ; Fuchimura K; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochemistry; 1987 Dec; 26(26):8620-4. PubMed ID: 3126807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities for structure-based design of protease-directed drugs.
    Mittl PR; Grütter MG
    Curr Opin Struct Biol; 2006 Dec; 16(6):769-75. PubMed ID: 17112720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-charge interactions are the primary determinants of the pK values of the ionizable groups in Ribonuclease T1.
    Pace CN; Huyghues-Despointes BM; Briggs JM; Grimsley GR; Scholtz JM
    Biophys Chem; 2002 Dec; 101-102():211-9. PubMed ID: 12488002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.