BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 23759941)

  • 21. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment.
    Hubner B; Haensler M; Hahn U
    Biochemistry; 1999 Jan; 38(4):1371-6. PubMed ID: 9931000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of a bacterial glutamic peptidase.
    Jensen K; Østergaard PR; Wilting R; Lassen SF
    BMC Biochem; 2010 Dec; 11():47. PubMed ID: 21122090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extended kinetic analysis of ribonuclease T1 variants leads to an improved scheme for the reaction mechanism.
    Backmann J; Doray CC; Grunert HP; Landt O; Hahn U
    Biochem Biophys Res Commun; 1994 Feb; 199(1):213-9. PubMed ID: 8123015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP.
    Ishikawa K; Suzuki E; Tanokura M; Takahashi K
    Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Papain-like peptidases: structure, function, and evolution.
    Novinec M; Lenarčič B
    Biomol Concepts; 2013 Jun; 4(3):287-308. PubMed ID: 25436581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are turns required for the folding of ribonuclease T1?
    Garrett JB; Mullins LS; Raushel FM
    Protein Sci; 1996 Feb; 5(2):204-11. PubMed ID: 8745397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional structure of Gln25-ribonuclease T1 at 1.84-A resolution: structural variations at the base recognition and catalytic sites.
    Arni RK; Pal GP; Ravichandran KG; Tulinsky A; Walz FG; Metcalf P
    Biochemistry; 1992 Mar; 31(12):3126-35. PubMed ID: 1554699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases.
    Wlodawer A; Li M; Gustchina A; Oyama H; Dunn BM; Oda K
    Acta Biochim Pol; 2003; 50(1):81-102. PubMed ID: 12673349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases.
    Wlodawer A; Durell SR; Li M; Oyama H; Oda K; Dunn BM
    BMC Struct Biol; 2003 Nov; 3():8. PubMed ID: 14609438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP.
    Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K
    J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
    Pfeiffer S; Karimi-Nejad Y; Rüterjans H
    J Mol Biol; 1997 Feb; 266(2):400-23. PubMed ID: 9047372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure and function of ribonuclease T1. XX. Specific inactivation of ribonuclease T1 by reaction with tosylglycolate.
    Oshima H; Takahashi K
    J Biochem; 1976 Dec; 80(6):1259-65. PubMed ID: 14119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reverse action of ribonuclease T1 in frozen aqueous systems.
    Haensler M; Hahn U; Jakubke HD
    Biol Chem; 1997 Feb; 378(2):115-8. PubMed ID: 9088540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of non-conserved distal carboxyl terminal amino acids in two peptidases belonging to the M1 family: Thermoplasma acidophilum Tricorn interacting factor F2 and Escherichia coli Peptidase N.
    Kumar A; Bhosale M; Reddy S; Srinivasan N; Nandi D
    Biochimie; 2009 Sep; 91(9):1145-55. PubMed ID: 19527767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific protein-nucleic acid recognition in ribonuclease T1-2'-guanylic acid complex: an X-ray study.
    Heinemann U; Saenger W
    Nature; 1982 Sep; 299(5878):27-31. PubMed ID: 6287278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of RNase T1: concerted triester-like phosphoryl transfer via a catalytic three-centered hydrogen bond.
    Loverix S; Winqvist A; Strömberg R; Steyaert J
    Chem Biol; 2000 Aug; 7(8):651-8. PubMed ID: 11048955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitors of rhomboid proteases.
    Wolf EV; Verhelst SH
    Biochimie; 2016 Mar; 122():38-47. PubMed ID: 26166068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational approach for detecting peptidases and their specific inhibitors at the genome level.
    Bartoli L; Calabrese R; Fariselli P; Mita DG; Casadio R
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S3. PubMed ID: 17430570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.