These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23760363)

  • 1. Highly robust silicon nanowire/graphene core-shell electrodes without polymeric binders.
    Lee SE; Kim HJ; Kim H; Park JH; Choi DG
    Nanoscale; 2013 Oct; 5(19):8986-91. PubMed ID: 23760363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries.
    Zhu Y; Liu W; Zhang X; He J; Chen J; Wang Y; Cao T
    Langmuir; 2013 Jan; 29(2):744-9. PubMed ID: 23268716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries.
    Wang J; Zhou M; Tan G; Chen S; Wu F; Lu J; Amine K
    Nanoscale; 2015 May; 7(17):8023-34. PubMed ID: 25865463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D cross-linked nanoweb architecture of binder-free TiO(2) electrodes for lithium ion batteries.
    Lee S; Ha J; Choi J; Song T; Lee JW; Paik U
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11525-9. PubMed ID: 24215559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.
    Kim HJ; Lee J; Lee SE; Kim W; Kim HJ; Choi DG; Park JH
    ChemSusChem; 2013 Nov; 6(11):2144-8. PubMed ID: 24039099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.
    Sun C; Deng Y; Wan L; Qin X; Chen G
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11277-85. PubMed ID: 24922522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries.
    Jeena MT; Lee JI; Kim SH; Kim C; Kim JY; Park S; Ryu JH
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18001-7. PubMed ID: 25233116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.
    Yang HS; Kim SH; Kannan AG; Kim SK; Park C; Kim DW
    Langmuir; 2016 Apr; 32(13):3300-7. PubMed ID: 27008091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells.
    Xu J; Zhang L; Wang Y; Chen T; Al-Shroofy M; Cheng YT
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3562-3569. PubMed ID: 28075114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes.
    Wang B; Li X; Zhang X; Luo B; Jin M; Liang M; Dayeh SA; Picraux ST; Zhi L
    ACS Nano; 2013 Feb; 7(2):1437-45. PubMed ID: 23281801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries.
    Lin S; Wang F; Hong R
    J Colloid Interface Sci; 2022 May; 613():857-865. PubMed ID: 35114521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.