These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
803 related articles for article (PubMed ID: 23760469)
1. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469 [TBL] [Abstract][Full Text] [Related]
2. Water splitting on semiconductor catalysts under visible-light irradiation. Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754 [TBL] [Abstract][Full Text] [Related]
3. Effective Charge Carrier Utilization in Photocatalytic Conversions. Zhang P; Wang T; Chang X; Gong J Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166 [TBL] [Abstract][Full Text] [Related]
4. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
5. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
6. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Daskalaki VM; Antoniadou M; Li Puma G; Kondarides DI; Lianos P Environ Sci Technol; 2010 Oct; 44(19):7200-5. PubMed ID: 20423075 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
9. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. Liu M; Qiu X; Miyauchi M; Hashimoto K J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. Gunjakar JL; Kim TW; Kim HN; Kim IY; Hwang SJ J Am Chem Soc; 2011 Sep; 133(38):14998-5007. PubMed ID: 21861530 [TBL] [Abstract][Full Text] [Related]
12. Nature-driven photochemistry for catalytic solar hydrogen production: a Photosystem I-transition metal catalyst hybrid. Utschig LM; Silver SC; Mulfort KL; Tiede DM J Am Chem Soc; 2011 Oct; 133(41):16334-7. PubMed ID: 21923143 [TBL] [Abstract][Full Text] [Related]
13. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. Wang H; Peng R; Hood ZD; Naguib M; Adhikari SP; Wu Z ChemSusChem; 2016 Jun; 9(12):1490-7. PubMed ID: 27219205 [TBL] [Abstract][Full Text] [Related]
14. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation. Chen YL; Lo SL; Chang HL; Yeh HM; Sun L; Oiu C Water Sci Technol; 2016; 73(7):1667-72. PubMed ID: 27054739 [TBL] [Abstract][Full Text] [Related]
15. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Ma TY; Yuan ZY ChemSusChem; 2011 Oct; 4(10):1407-19. PubMed ID: 21598407 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen production over titania-based photocatalysts. Leung DY; Fu X; Wang C; Ni M; Leung MK; Wang X; Fu X ChemSusChem; 2010 Jun; 3(6):681-94. PubMed ID: 20432422 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells. Pang H; Yang H; Guo CX; Lu J; Li CM Chem Commun (Camb); 2012 Sep; 48(70):8832-4. PubMed ID: 22836665 [TBL] [Abstract][Full Text] [Related]
18. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712 [TBL] [Abstract][Full Text] [Related]
19. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
20. Tantalum-based semiconductors for solar water splitting. Zhang P; Zhang J; Gong J Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]