These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

802 related articles for article (PubMed ID: 23760469)

  • 21. Solar photochemical and thermochemical splitting of water.
    Rao CN; Lingampalli SR; Dey S; Roy A
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Splitting water with cobalt.
    Artero V; Chavarot-Kerlidou M; Fontecave M
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.
    Yuan YJ; Lu HW; Yu ZT; Zou ZG
    ChemSusChem; 2015 Dec; 8(24):4113-27. PubMed ID: 26586523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A p-type Ti(IV)-based metal-organic framework with visible-light photo-response.
    Gao J; Miao J; Li PZ; Teng WY; Yang L; Zhao Y; Liu B; Zhang Q
    Chem Commun (Camb); 2014 Apr; 50(29):3786-8. PubMed ID: 24522830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.
    Wang W; Chen J; Li C; Tian W
    Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres.
    Hoang S; Ngo TQ; Berglund SP; Fullon RR; Ekerdt JG; Mullins CB
    Chemphyschem; 2013 Jul; 14(10):2270-6. PubMed ID: 23512241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.
    Wang P; Dimitrijevic NM; Chang AY; Schaller RD; Liu Y; Rajh T; Rozhkova EA
    ACS Nano; 2014 Aug; 8(8):7995-8002. PubMed ID: 25050831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and functionalization of photocatalytic systems within mesoporous silica.
    Qian X; Fuku K; Kuwahara Y; Kamegawa T; Mori K; Yamashita H
    ChemSusChem; 2014 Jun; 7(6):1528-36. PubMed ID: 24828540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast carrier dynamics in nanostructures for solar fuels.
    Baxter JB; Richter C; Schmuttenmaer CA
    Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.
    Li G; Kang C; Li C; Lu Z; Zhang J; Gong X; Zhao G; Dong H; Hu W; Bo Z
    Macromol Rapid Commun; 2014 Jun; 35(12):1142-7. PubMed ID: 24700381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Hybrid Composites for Photocatalytic Applications: A Review.
    Porcu S; Secci F; Ricci PC
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting.
    Cui J; Li C; Zhang F
    ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoporous nitrogen-doped titanium dioxide with excellent photocatalytic activity under visible light irradiation produced by molecular layer deposition.
    Chen C; Li P; Wang G; Yu Y; Duan F; Chen C; Song W; Qin Y; Knez M
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9196-200. PubMed ID: 23843302
    [No Abstract]   [Full Text] [Related]  

  • 39. Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting.
    Askari N; Jamalzadeh M; Askari A; Liu N; Samali B; Sillanpaa M; Sheppard L; Li H; Dewil R
    J Environ Sci (China); 2025 Feb; 148():283-297. PubMed ID: 39095165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesoporous TiN microspheres with hierarchical chambers and enhanced visible light-driven hydrogen evolution.
    Li G; Zhang P; Bian Z; Zhu J; Wu L; Li H
    ChemSusChem; 2013 Aug; 6(8):1461-6. PubMed ID: 23784852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.