These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23760527)

  • 1. Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes.
    Schwenke KU; Meini S; Wu X; Gasteiger HA; Piana M
    Phys Chem Chem Phys; 2013 Jul; 15(28):11830-9. PubMed ID: 23760527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Detection of the Superoxide Anion as a Stable Intermediate in the Electroreduction of Oxygen in a Non-Aqueous Electrolyte Containing Phenol as a Proton Source.
    Peng Z; Chen Y; Bruce PG; Xu Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8165-8. PubMed ID: 26013064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-free lithium-oxygen batteries.
    Balaish M; Peled E; Golodnitsky D; Ein-Eli Y
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):436-40. PubMed ID: 25283299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Li-O
    Kwon HM; Thomas ML; Tatara R; Oda Y; Kobayashi Y; Nakanishi A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6014-6021. PubMed ID: 28121136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.
    Yoshida K; Nakamura M; Kazue Y; Tachikawa N; Tsuzuki S; Seki S; Dokko K; Watanabe M
    J Am Chem Soc; 2011 Aug; 133(33):13121-9. PubMed ID: 21774493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Electrochemical Fabrication of KO
    Yu W; Wang H; Qin L; Hu J; Liu L; Li B; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2018 May; 10(20):17156-17166. PubMed ID: 29719955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?
    Ueno K; Yoshida K; Tsuchiya M; Tachikawa N; Dokko K; Watanabe M
    J Phys Chem B; 2012 Sep; 116(36):11323-31. PubMed ID: 22897246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the solvent stability on the cathode surface of Li-O
    Ge A; Nagai R; Nemoto K; Li B; Kannari K; Inoue KI; Ye S
    Faraday Discuss; 2024 Jan; 248(0):119-133. PubMed ID: 37842815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Li-O₂/air battery using an inorganic solid-state air cathode.
    Wang X; Zhu D; Song M; Cai S; Zhang L; Chen Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11204-10. PubMed ID: 24959838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium-Air Batteries with Hybrid Electrolytes.
    He P; Zhang T; Jiang J; Zhou H
    J Phys Chem Lett; 2016 Apr; 7(7):1267-80. PubMed ID: 26977713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hindered Glymes for Graphite-Compatible Electrolytes.
    Shanmukaraj D; Grugeon S; Laruelle S; Armand M
    ChemSusChem; 2015 Aug; 8(16):2691-5. PubMed ID: 26212607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM.
    Sharon D; Etacheri V; Garsuch A; Afri M; Frimer AA; Aurbach D
    J Phys Chem Lett; 2013 Jan; 4(1):127-31. PubMed ID: 26291224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical stability of glyme-based electrolytes for Li-O
    Horwitz G; Calvo EJ; Méndez De Leo LP; de la Llave E
    Phys Chem Chem Phys; 2020 Aug; 22(29):16615-16623. PubMed ID: 32671355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).
    Bryantsev VS; Giordani V; Walker W; Blanco M; Zecevic S; Sasaki K; Uddin J; Addison D; Chase GV
    J Phys Chem A; 2011 Nov; 115(44):12399-409. PubMed ID: 21962008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Speidel A; Scheffler R; Miller DC; Viswanathan V; Hummelshøj JS; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2012 Apr; 3(8):997-1001. PubMed ID: 26286562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li(+) solvation in glyme-Li salt solvate ionic liquids.
    Ueno K; Tatara R; Tsuzuki S; Saito S; Doi H; Yoshida K; Mandai T; Matsugami M; Umebayashi Y; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2015 Mar; 17(12):8248-57. PubMed ID: 25733406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes.
    Freunberger SA; Chen Y; Peng Z; Griffin JM; Hardwick LJ; Bardé F; Novák P; Bruce PG
    J Am Chem Soc; 2011 May; 133(20):8040-7. PubMed ID: 21524112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.