These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23760667)

  • 1. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task.
    Hardiess G; Hansmann-Roth S; Mallot HA
    Front Behav Neurosci; 2013; 7():62. PubMed ID: 23760667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze patterns predicting successful collision avoidance in patients with homonymous visual field defects.
    Papageorgiou E; Hardiess G; Mallot HA; Schiefer U
    Vision Res; 2012 Jul; 65():25-37. PubMed ID: 22721638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-dependent representation of moving objects within working memory in obstacle avoidance.
    Hardiess G; Mallot HA
    Strabismus; 2010 Sep; 18(3):78-82. PubMed ID: 20843183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural correlates of impaired collision avoidance in hemianopic patients.
    Papageorgiou E; Hardiess G; Wiethölter H; Ackermann H; Dietz K; Mallot HA; Schiefer U
    Acta Ophthalmol; 2012 May; 90(3):e198-205. PubMed ID: 22176680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.
    Papageorgiou E; Hardiess G; Ackermann H; Wiethoelter H; Dietz K; Mallot HA; Schiefer U
    Vision Res; 2012 Jan; 52(1):20-30. PubMed ID: 22100816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclists' eye movements and crossing judgments at uncontrolled intersections: An eye-tracking study using animated video clips.
    Kovácsová N; Cabrall CDD; Antonisse SJ; de Haan T; van Namen R; Nooren JL; Schreurs R; Hagenzieker MP; de Winter JCF
    Accid Anal Prev; 2018 Nov; 120():270-280. PubMed ID: 30176523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunities and Limitations of a Gaze-Contingent Display to Simulate Visual Field Loss in Driving Simulator Studies.
    Biebl B; Arcidiacono E; Kacianka S; Rieger JW; Bengler K
    Front Neuroergon; 2022; 3():916169. PubMed ID: 38235462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional compensation of visual field deficits in hemianopic patients under the influence of different task demands.
    Hardiess G; Papageorgiou E; Schiefer U; Mallot HA
    Vision Res; 2010 Jun; 50(12):1158-72. PubMed ID: 20381514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving With Hemianopia X: Effects of Cross Traffic on Gaze Behaviors and Pedestrian Responses at Intersections.
    Xu J; Baliutaviciute V; Swan G; Bowers AR
    Front Hum Neurosci; 2022; 16():938140. PubMed ID: 35898933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Drivers' Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections.
    Yan X; Zhang X; Zhang Y; Li X; Yang Z
    PLoS One; 2016; 11(10):e0164101. PubMed ID: 27716824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving with Glaucoma: Task Performance and Gaze Movements.
    Kübler TC; Kasneci E; Rosenstiel W; Heister M; Aehling K; Nagel K; Schiefer U; Papageorgiou E
    Optom Vis Sci; 2015 Nov; 92(11):1037-46. PubMed ID: 26501733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does intersection field of view influence driving safety in an emergent situation?
    Yan X; Zhang X; Xue Q
    Accid Anal Prev; 2018 Oct; 119():162-175. PubMed ID: 30036817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of dual tasking on gaze behaviour and locomotor strategies adopted while circumventing virtual pedestrians during a collision avoidance task.
    Bhojwani TM; Lynch SD; Bühler MA; Lamontagne A
    Exp Brain Res; 2022 Oct; 240(10):2633-2645. PubMed ID: 35980438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze behavior while crossing complex intersections.
    Geruschat DR; Hassan S; Turano KA
    Optom Vis Sci; 2003 Jul; 80(7):515-28. PubMed ID: 12858087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting concealed familiarity using eye movements: the role of task demands.
    Nahari T; Lancry-Dayan O; Ben-Shakhar G; Pertzov Y
    Cogn Res Princ Implic; 2019 Mar; 4(1):10. PubMed ID: 30924011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat spatial memory tasks adapted for humans: characterization in subjects with intact brain and subjects with selective medial temporal lobe thermal lesions.
    Bohbot VD; Jech R; Růzicka E; Nadel L; Kalina M; Stepánková K; Bures J
    Physiol Res; 2002; 51 Suppl 1():S49-65. PubMed ID: 12479786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.
    Hamel J; Kraft A; Ohl S; De Beukelaer S; Audebert HJ; Brandt SA
    J Vis Exp; 2012 Sep; (67):e4427. PubMed ID: 23023223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint attention is intact even when visuospatial working memory is occupied.
    Yokoyama T; Kato R; Inoue K; Takeda Y
    Vision Res; 2019 Jan; 154():54-59. PubMed ID: 30414850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head and eye movements and the role of memory limitations in a visual search paradigm.
    Hardiess G; Gillner S; Mallot HA
    J Vis; 2008 Jan; 8(1):7.1-13. PubMed ID: 18318610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Socio-Demographic Attributes and Mutual Gaze of Virtual Humans on Users' Visual Attention and Collision Avoidance in VR.
    Huang WC; Wong SK; Volonte M; Babu SV
    IEEE Trans Vis Comput Graph; 2023 Nov; PP():. PubMed ID: 37917527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.