These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23760879)

  • 21. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination.
    Karakaş M; Woetzel N; Meiler J
    J Comput Biol; 2010 Feb; 17(2):153-68. PubMed ID: 19772383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL.
    Kryshtafovych A; Monastyrskyy B; Fidelis K
    Proteins; 2014 Feb; 82 Suppl 2(0 2):7-13. PubMed ID: 24038551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.
    Zhang H; Gao Y; Deng M; Wang C; Zhu J; Li SC; Zheng WM; Bu D
    Biochem Biophys Res Commun; 2016 Mar; 472(1):217-22. PubMed ID: 26920058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting residue-residue contacts using random forest models.
    Li Y; Fang Y; Fang J
    Bioinformatics; 2011 Dec; 27(24):3379-84. PubMed ID: 22016406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the assessment: evaluation of the model quality estimates in CASP10.
    Kryshtafovych A; Barbato A; Fidelis K; Monastyrskyy B; Schwede T; Tramontano A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):112-26. PubMed ID: 23780644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator.
    Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H
    BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
    Schaarschmidt J; Monastyrskyy B; Kryshtafovych A; Bonvin AMJJ
    Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):51-66. PubMed ID: 29071738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of domain interactions in the fourteenth round of the Critical Assessment of Structure Prediction (CASP14).
    Schaeffer RD; Kinch L; Kryshtafovych A; Grishin NV
    Proteins; 2021 Dec; 89(12):1700-1710. PubMed ID: 34455641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling.
    Kim DE; Dimaio F; Yu-Ruei Wang R; Song Y; Baker D
    Proteins; 2014 Feb; 82 Suppl 2(0 2):208-18. PubMed ID: 23900763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CASP10 results compared to those of previous CASP experiments.
    Kryshtafovych A; Fidelis K; Moult J
    Proteins; 2014 Feb; 82 Suppl 2(0 2):164-74. PubMed ID: 24150928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing Predicted Contacts for Building Protein Three-Dimensional Models.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Methods Mol Biol; 2017; 1484():115-126. PubMed ID: 27787823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of disorder predictions in CASP9.
    Monastyrskyy B; Fidelis K; Moult J; Tramontano A; Kryshtafovych A
    Proteins; 2011; 79 Suppl 10(S10):107-18. PubMed ID: 21928402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
    Abriata LA; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():97-112. PubMed ID: 29139163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.