BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 23760935)

  • 1. Microbial urate catabolism: characterization of HpyO, a non-homologous isofunctional isoform of the flavoprotein urate hydroxylase HpxO.
    Michiel M; Perchat N; Perret A; Tricot S; Papeil A; Besnard M; de Berardinis V; Salanoubat M; Fischer C
    Environ Microbiol Rep; 2012 Dec; 4(6):642-7. PubMed ID: 23760935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of the HpxO enzyme from Klebsiella pneumoniae, a novel FAD-dependent urate oxidase.
    O'Leary SE; Hicks KA; Ealick SE; Begley TP
    Biochemistry; 2009 Apr; 48(14):3033-5. PubMed ID: 19260710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes.
    Pope SD; Chen LL; Stewart V
    J Bacteriol; 2009 Feb; 191(3):1006-17. PubMed ID: 19060149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of the gene encoding a new AmpC beta-lactamase in Acinetobacter baylyi.
    Beceiro A; Pérez-Llarena FJ; Pérez A; Tomás Mdel M; Fernández A; Mallo S; Villanueva R; Bou G
    J Antimicrob Chemother; 2007 May; 59(5):996-1000. PubMed ID: 17403709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.
    Omelchenko MV; Galperin MY; Wolf YI; Koonin EV
    Biol Direct; 2010 Apr; 5():31. PubMed ID: 20433725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes.
    Ramazzina I; Folli C; Secchi A; Berni R; Percudani R
    Nat Chem Biol; 2006 Mar; 2(3):144-8. PubMed ID: 16462750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of bacterial phosphoglycerate mutases: non-homologous isofunctional enzymes undergoing gene losses, gains and lateral transfers.
    Foster JM; Davis PJ; Raverdy S; Sibley MH; Raleigh EA; Kumar S; Carlow CK
    PLoS One; 2010 Oct; 5(10):e13576. PubMed ID: 21187861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of intermediates in the urate oxidase reaction.
    Kahn K; Tipton PA
    Biochemistry; 1998 Aug; 37(33):11651-9. PubMed ID: 9709003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic reactivity of uric acid with dioxygen: Towards the elucidation of the catalytic mechanism of urate oxidase.
    Altarsha M; Castro B; Monard G
    Bioorg Chem; 2009 Aug; 37(4):111-25. PubMed ID: 19539344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purine-induced expression of urate oxidase and enzyme activity in Atlantic salmon (Salmo salar). Cloning of urate oxidase liver cDNA from three teleost species and the African lungfish Protopterus annectens.
    Andersen Ø; Aas TS; Skugor S; Takle H; van Nes S; Grisdale-Helland B; Helland SJ; Terjesen BF
    FEBS J; 2006 Jul; 273(13):2839-50. PubMed ID: 16759232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1.
    Huang WE; Singer AC; Spiers AJ; Preston GM; Whiteley AS
    Environ Microbiol; 2008 Jul; 10(7):1668-80. PubMed ID: 18363715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1.
    Ezezika OC; Collier-Hyams LS; Dale HA; Burk AC; Neidle EL
    Appl Environ Microbiol; 2006 Mar; 72(3):1749-58. PubMed ID: 16517618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site.
    Doll C; Bell AF; Power N; Tonge PJ; Tipton PA
    Biochemistry; 2005 Aug; 44(34):11440-6. PubMed ID: 16114880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acinetobacter baylyi ADP1: transforming the choice of model organism.
    Elliott KT; Neidle EL
    IUBMB Life; 2011 Dec; 63(12):1075-80. PubMed ID: 22034222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide selection for increased copy number in Acinetobacter baylyi ADP1: locus and context-dependent variation in gene amplification.
    Seaton SC; Elliott KT; Cuff LE; Laniohan NS; Patel PR; Neidle EL
    Mol Microbiol; 2012 Feb; 83(3):520-35. PubMed ID: 22211470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucocorticoid regulation of rat liver urate oxidase.
    Raab LS; Decker GL; Jonas AJ; Kaetzel MA; Dedman JR
    J Cell Biochem; 1991 Sep; 47(1):18-30. PubMed ID: 1939364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of the transthyretin-like protein from Salmonella dublin, a prokaryote 5-hydroxyisourate hydrolase.
    Hennebry SC; Law RH; Richardson SJ; Buckle AM; Whisstock JC
    J Mol Biol; 2006 Jun; 359(5):1389-99. PubMed ID: 16787778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel laccase with urate oxidation activity from Lysobacter sp. T-15.
    Tamaki H; Matsuoka T; Yasuda Y; Hanada S; Kamagata Y; Nakamura K; Sakasegawa S
    J Biochem; 2010 Oct; 148(4):481-9. PubMed ID: 20675295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.