These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23760984)

  • 1. Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently.
    Marmel F; Linley D; Carlyon RP; Gockel HE; Hopkins K; Plack CJ
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):757-66. PubMed ID: 23760984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners.
    Zhang X; Gong Q
    Hear Res; 2017 Feb; 344():255-264. PubMed ID: 27956352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related reduction in frequency-following responses as a potential marker of cochlear neural degeneration.
    Märcher-Rørsted J; Encina-Llamas G; Dau T; Liberman MC; Wu PZ; Hjortkjær J
    Hear Res; 2022 Feb; 414():108411. PubMed ID: 34929535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoptimal Perceptual Integration Suggests a Place-Based Representation of Pitch at High Frequencies.
    Lau BK; Mehta AH; Oxenham AJ
    J Neurosci; 2017 Sep; 37(37):9013-9021. PubMed ID: 28821642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration.
    Temboury-Gutierrez M; Märcher-Rørsted J; Bille M; Yde J; Encina-Llamas G; Hjortkjær J; Dau T
    Hear Res; 2024 May; 446():109005. PubMed ID: 38598943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Temporal Envelope and Fine Structure in Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.
    Wang S; Dong R; Liu D; Wang Y; Liu B; Zhang L; Xu L
    PLoS One; 2015; 10(6):e0129710. PubMed ID: 26052707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear initiation site of the frequency-following response: a study of patients with sensorineural hearing loss.
    Yamada O; Kodera K; Hink RF; Yamane H
    Audiology; 1978; 17(6):489-99. PubMed ID: 718538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of across-frequency asynchrony by listeners with cochlear hearing loss.
    Wojtczak M; Beim JA; Micheyl C; Oxenham AJ
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):573-89. PubMed ID: 23612740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.
    Kale S; Micheyl C; Heinz MG
    Adv Exp Med Biol; 2013; 787():109-18. PubMed ID: 23716215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging effects on the neural representation and perception of consonant transition cues.
    Poe AA; Karawani H; Anderson S
    Hear Res; 2024 Jul; 448():109034. PubMed ID: 38781768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve.
    Sinex DG; Havey DC
    J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Cochlear Damage on the Sensitivity to Harmonicity.
    Bonnard D; Dauman R; Semal C; Demany L
    Ear Hear; 2017; 38(1):85-93. PubMed ID: 27992390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pure tone pitch perception and low-frequency hearing loss.
    Turner C; Burns EM; Nelson DA
    J Acoust Soc Am; 1983 Mar; 73(3):966-75. PubMed ID: 6841823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss.
    Kale S; Heinz MG
    Hear Res; 2012 Apr; 286(1-2):64-75. PubMed ID: 22366500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss.
    Mai G; Howell P
    Hear Res; 2023 Jan; 427():108647. PubMed ID: 36436293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interplay Between Spike-Time and Spike-Rate Modes in the Auditory Nerve Encodes Tone-In-Noise Threshold.
    Huet A; Desmadryl G; Justal T; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2018 Jun; 38(25):5727-5738. PubMed ID: 29793977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age and hearing impairment on the ability to benefit from temporal and spectral modulation.
    Hall JW; Buss E; Grose JH; Roush PA
    Ear Hear; 2012; 33(3):340-8. PubMed ID: 22237164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory Entrainment of the Frequency-following Response in Auditory Cortical and Subcortical Structures.
    Coffey EBJ; Arseneau-Bruneau I; Zhang X; Baillet S; Zatorre RJ
    J Neurosci; 2021 May; 41(18):4073-4087. PubMed ID: 33731448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils.
    Heeringa AN; Zhang L; Ashida G; Beutelmann R; Steenken F; Köppl C
    J Neurosci; 2020 Jan; 40(2):343-354. PubMed ID: 31719164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.