BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23761034)

  • 1. Glutamate dehydrogenases: the why and how of coenzyme specificity.
    Engel PC
    Neurochem Res; 2014; 39(3):426-32. PubMed ID: 23761034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of coenzyme utilization by bovine liver glutamate dehydrogenase: investigations using thionicotinamide analogues of NAD and NADP in a dual wavelength assay.
    Male KB; Storey KB
    Int J Biochem; 1982; 14(12):1083-9. PubMed ID: 7173489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of NADP(+)-dependent glutamate dehydrogenase from Escherichia coli--reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases.
    Sharkey MA; Oliveira TF; Engel PC; Khan AR
    FEBS J; 2013 Sep; 280(18):4681-92. PubMed ID: 23879525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA
    Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH/NADH-dependent cold-labile glutamate dehydrogenase in Azospirillum brasilense. Purification and properties.
    Maulik P; Ghosh S
    Eur J Biochem; 1986 Mar; 155(3):595-602. PubMed ID: 3956501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The simultaneous determination of NAD(H) and NADP(H) utilization by glutamate dehydrogenase.
    Treberg JR; Brosnan ME; Brosnan JT
    Mol Cell Biochem; 2010 Nov; 344(1-2):253-9. PubMed ID: 20697932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of glutamate 279 for the coenzyme binding of human glutamate dehydrogenase.
    Yoon HY; Cho EH; Kwon HY; Choi SY; Cho SW
    J Biol Chem; 2002 Nov; 277(44):41448-54. PubMed ID: 12193607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of dogfish liver glutamate dehydrogenase.
    Electricwala AH; Dickinson FM
    Biochem J; 1979 Feb; 177(2):449-59. PubMed ID: 35153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme.
    Capone M; Scanlon D; Griffin J; Engel PC
    FEBS J; 2011 Jul; 278(14):2460-8. PubMed ID: 21564547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme.
    Camardella L; Di Fraia R; Antignani A; Ciardiello MA; di Prisco G; Coleman JK; Buchon L; Guespin J; Russell NJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Mar; 131(3):559-67. PubMed ID: 11867281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica.
    Trotter PJ; Juco K; Le HT; Nelson K; Tamayo LI; Nicaud JM; Park YK
    Yeast; 2020 Jan; 37(1):103-115. PubMed ID: 31119792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of two L-glutamate dehydrogenases in the coral Acropora latistella.
    Dudler N; Yellowlees D; Miller DJ
    Arch Biochem Biophys; 1987 Apr; 254(1):368-71. PubMed ID: 2883933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coenzyme-binding pathway on glutamate dehydrogenase suggested from multiple-binding sites visualized by cryo-electron microscopy.
    Wakabayashi T; Oide M; Kato T; Nakasako M
    FEBS J; 2023 Dec; 290(23):5514-5535. PubMed ID: 37682540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular coenzyme specificity: a domain-swopped chimera of glutamate dehydrogenase.
    Sharkey MA; Engel PC
    Proteins; 2009 Nov; 77(2):268-78. PubMed ID: 19425107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into the inhibition of glutamate dehydrogenase by the dicarboxylic acid metabolites.
    Godsora BKJ; Prakash P; Punekar NS; Bhaumik P
    Proteins; 2022 Mar; 90(3):810-823. PubMed ID: 34748226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of NADP-dependent glutamate dehydrogenase from Streptomyces fradiae.
    Vancurová I; Vancura A; Volc J; Kopecký J; Neuzil J; Basarová G; Bĕhal V
    J Gen Microbiol; 1989 Dec; 135(12):3311-8. PubMed ID: 2561488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis.
    Carrigan JB; Engel PC
    FEBS J; 2007 Oct; 274(19):5167-74. PubMed ID: 17850332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry).
    Botman D; Tigchelaar W; Van Noorden CJ
    J Histochem Cytochem; 2014 Nov; 62(11):802-12. PubMed ID: 25124006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae.
    Ertan H
    Arch Microbiol; 1992; 158(1):35-41. PubMed ID: 1359847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.