BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23761054)

  • 21. Intradermal Delivery of an Immunomodulator for Basal Cell Carcinoma; Expanding the Mechanistic Insight into Solid Microneedle-Enhanced Delivery of Hydrophobic Molecules.
    Sabri A; Ogilvie J; McKenna J; Segal J; Scurr D; Marlow M
    Mol Pharm; 2020 Aug; 17(8):2925-2937. PubMed ID: 32510228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local transdermal delivery of phenylephrine to the anal sphincter muscle using microneedles.
    Baek C; Han M; Min J; Prausnitz MR; Park JH; Park JH
    J Control Release; 2011 Sep; 154(2):138-47. PubMed ID: 21586307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):267-76. PubMed ID: 24120887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population.
    Duarah S; Sharma M; Wen J
    Eur J Pharm Biopharm; 2019 Mar; 136():48-69. PubMed ID: 30633972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.
    Lim SH; Ng JY; Kang L
    Biofabrication; 2017 Jan; 9(1):015010. PubMed ID: 28071597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.
    Shah V; Choudhury BK
    AAPS PharmSciTech; 2017 Nov; 18(8):2936-2948. PubMed ID: 28432615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.
    Kelchen MN; Holdren GO; Farley MJ; Zimmerman MB; Fairley JA; Brogden NK
    Pharm Res; 2014 Dec; 31(12):3478-86. PubMed ID: 24947437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ex vivo evaluation of a microneedle array device for transdermal application.
    Indermun S; Choonara YE; Kumar P; du Toit LC; Modi G; van Vuuren S; Luttge R; Pillay V
    Int J Pharm; 2015 Dec; 496(2):351-9. PubMed ID: 26453791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flux across [corrected] microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro.
    Banks SL; Pinninti RR; Gill HS; Crooks PA; Prausnitz MR; Stinchcomb AL
    Pharm Res; 2008 Jul; 25(7):1677-85. PubMed ID: 18449628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of patents for microneedle application devices allowing fluid injections through the skin.
    Lhernould MS; Tailler S; Deleers M; Delchambre A
    Recent Pat Drug Deliv Formul; 2015; 9(2):146-57. PubMed ID: 25770583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermosensitive biomaterial gels with chemical permeation enhancers for enhanced microneedle delivery of naltrexone for managing opioid and alcohol dependency.
    Tobin KV; Brogden NK
    Biomater Sci; 2023 Aug; 11(17):5846-5858. PubMed ID: 37455601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
    Al-Qallaf B; Das DB
    Ann N Y Acad Sci; 2009 Apr; 1161():83-94. PubMed ID: 19426308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A duplex "Gemini" prodrug of naltrexone for transdermal delivery.
    Hammell DC; Hamad M; Vaddi HK; Crooks PA; Stinchcomb AL
    J Control Release; 2004 Jun; 97(2):283-90. PubMed ID: 15196755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.
    Waghule T; Singhvi G; Dubey SK; Pandey MM; Gupta G; Singh M; Dua K
    Biomed Pharmacother; 2019 Jan; 109():1249-1258. PubMed ID: 30551375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate.
    Kaur M; Ita KB; Popova IE; Parikh SJ; Bair DA
    Eur J Pharm Biopharm; 2014 Feb; 86(2):284-91. PubMed ID: 24176676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review.
    Queiroz MLB; Shanmugam S; Santos LNS; Campos CA; Santos AM; Batista MS; Araújo AAS; Serafini MR
    Expert Opin Ther Pat; 2020 Jun; 30(6):433-452. PubMed ID: 32164470
    [No Abstract]   [Full Text] [Related]  

  • 37. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration.
    McGrath MG; Vucen S; Vrdoljak A; Kelly A; O'Mahony C; Crean AM; Moore A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):200-11. PubMed ID: 23727511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macromolecular delivery into skin using a hollow microneedle.
    Wonglertnirant N; Todo H; Opanasopit P; Ngawhirunpat T; Sugibayashi K
    Biol Pharm Bull; 2010; 33(12):1988-93. PubMed ID: 21139238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microvascular effects of microneedle application.
    Hackethal J; Iredahl F; Henricson J; Anderson CD; Tesselaar E
    Skin Res Technol; 2021 Mar; 27(2):121-125. PubMed ID: 32662126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
    Caudill CL; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2018 Aug; 284():122-132. PubMed ID: 29894710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.