These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23761214)

  • 1. Limitations of global morphometry in predicting trabecular bone failure.
    Stauber M; Nazarian A; Müller R
    J Bone Miner Res; 2014 Jan; 29(1):134-41. PubMed ID: 23761214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of microstructure and volume fraction in predicting failure in cancellous bone.
    Nazarian A; Stauber M; Zurakowski D; Snyder BD; Müller R
    Bone; 2006 Dec; 39(6):1196-202. PubMed ID: 16920051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
    Mittra E; Rubin C; Qin YX
    J Biomech; 2005 Jun; 38(6):1229-37. PubMed ID: 15863107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
    Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M
    J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties.
    van Lenthe GH; Stauber M; Müller R
    Bone; 2006 Dec; 39(6):1182-9. PubMed ID: 16949356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.
    Alomari AH; Wille ML; Langton CM
    Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS).
    Zhou B; Liu XS; Wang J; Lu XL; Fields AJ; Guo XE
    J Biomech; 2014 Feb; 47(3):702-8. PubMed ID: 24360196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness.
    Stauber M; Rapillard L; van Lenthe GH; Zysset P; Müller R
    J Bone Miner Res; 2006 Apr; 21(4):586-95. PubMed ID: 16598379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing.
    Diederichs G; Link TM; Kentenich M; Schwieger K; Huber MB; Burghardt AJ; Majumdar S; Rogalla P; Issever AS
    Bone; 2009 May; 44(5):976-83. PubMed ID: 19442610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing methods for characterising local and global structural and biomechanical properties of the trabecular bone network.
    Sidorenko I; Monetti R; Bauer J; Mueller D; Rummeny E; Eckstein F; Matsuura M; Lochmueller EM; Zysset P; Raeth C
    Curr Med Chem; 2011; 18(22):3402-9. PubMed ID: 21728960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of trabecular bone behavior in core and whole bone samples using high-resolution modeling of a vertebral body.
    Harrison NM; McHugh PE
    Biomech Model Mechanobiol; 2010 Aug; 9(4):469-80. PubMed ID: 20066462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing.
    Nazarian A; Meier D; Müller R; Snyder BD
    J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
    Bauer JS; Sidorenko I; Mueller D; Baum T; Issever AS; Eckstein F; Rummeny EJ; Link TM; Raeth CW
    Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.
    Räth C; Baum T; Monetti R; Sidorenko I; Wolf P; Eckstein F; Matsuura M; Lochmüller EM; Zysset PK; Rummeny EJ; Link TM; Bauer JS
    Bone; 2013 Dec; 57(2):377-83. PubMed ID: 24056252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.