These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23761402)

  • 1. Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy.
    Kannan S; Muthusamy VR; Whitehead KJ; Wang L; Gomes AV; Litwin SE; Kensler TW; Abel ED; Hoidal JR; Rajasekaran NS
    Cardiovasc Res; 2013 Oct; 100(1):63-73. PubMed ID: 23761402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction.
    Shanmugam G; Wang D; Gounder SS; Fernandes J; Litovsky SH; Whitehead K; Radhakrishnan RK; Franklin S; Hoidal JR; Kensler TW; Dell'Italia L; Darley-Usmar V; Abel ED; Jones DP; Ping P; Rajasekaran NS
    Antioxid Redox Signal; 2020 Jun; 32(18):1293-1312. PubMed ID: 32064894
    [No Abstract]   [Full Text] [Related]  

  • 3. Transgenic Expression of Nrf2 Induces a Pro-Reductive Stress and Adaptive Cardiac Remodeling in the Mouse.
    Jyothidasan A; Sunny S; Murugesan S; Quiles JM; Challa AK; Dalley B; Cinghu SK; Nanda V; Rajasekaran NS
    Genes (Basel); 2022 Aug; 13(9):. PubMed ID: 36140682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice.
    Rajasekaran NS; Varadharaj S; Khanderao GD; Davidson CJ; Kannan S; Firpo MA; Zweier JL; Benjamin IJ
    Antioxid Redox Signal; 2011 Mar; 14(6):957-71. PubMed ID: 21126175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem Mass Tagging Based Identification of Proteome Signatures for Reductive Stress Cardiomyopathy.
    Sunny S; Jyothidasan A; David CL; Parsawar K; Veerappan A; Jones DP; Pogwizd S; Rajasekaran NS
    Front Cardiovasc Med; 2022; 9():848045. PubMed ID: 35770227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise mitigates reductive stress-induced cardiac remodeling in mice.
    Jyothidasan A; Sunny S; Devarajan A; Sayed A; Afortude JK; Dalley B; Nanda V; Pogwizd S; Litovsky SH; Trinity JD; Might M; Rajasekaran NS
    Redox Biol; 2024 Sep; 75():103263. PubMed ID: 39053266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress.
    Kumar RR; Narasimhan M; Shanmugam G; Hong J; Devarajan A; Palaniappan S; Zhang J; Halade GV; Darley-Usmar VM; Hoidal JR; Rajasekaran NS
    J Transl Med; 2016 Apr; 14():86. PubMed ID: 27048381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of transcriptome signature for myocardial reductive stress.
    Quiles JM; Narasimhan M; Mosbruger T; Shanmugam G; Crossman D; Rajasekaran NS
    Redox Biol; 2017 Oct; 13():568-580. PubMed ID: 28768233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive stress promotes protein aggregation and impairs neurogenesis.
    S Narasimhan KK; Devarajan A; Karan G; Sundaram S; Wang Q; van Groen T; Monte FD; Rajasekaran NS
    Redox Biol; 2020 Oct; 37():101739. PubMed ID: 33242767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium.
    Shanmugam G; Narasimhan M; Tamowski S; Darley-Usmar V; Rajasekaran NS
    Redox Biol; 2017 Aug; 12():937-945. PubMed ID: 28482326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent hypoxia-induced cardiomyopathy and its prevention by Nrf2 and metallothionein.
    Zhou S; Yin X; Jin J; Tan Y; Conklin DJ; Xin Y; Zhang Z; Sun W; Cui T; Cai J; Zheng Y; Cai L
    Free Radic Biol Med; 2017 Nov; 112():224-239. PubMed ID: 28778483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Nrf2-responsive microRNA networks as putative mediators of myocardial reductive stress.
    Quiles JM; Pepin ME; Sunny S; Shelar SB; Challa AK; Dalley B; Hoidal JR; Pogwizd SM; Wende AR; Rajasekaran NS
    Sci Rep; 2021 Jun; 11(1):11977. PubMed ID: 34099738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.
    Ghosh D; LeVault KR; Brewer GJ
    Neurobiol Aging; 2014 Jan; 35(1):179-90. PubMed ID: 23954169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.
    Gounder SS; Kannan S; Devadoss D; Miller CJ; Whitehead KJ; Odelberg SJ; Firpo MA; Paine R; Hoidal JR; Abel ED; Rajasekaran NS
    PLoS One; 2012; 7(9):e45697. PubMed ID: 23029187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure.
    Hamid T; Guo SZ; Kingery JR; Xiang X; Dawn B; Prabhu SD
    Cardiovasc Res; 2011 Jan; 89(1):129-38. PubMed ID: 20797985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Nrf2/ARE Signalling Pathway to Mitigate Isoproterenol-Induced Cardiac Hypertrophy: Plausible Role of Hesperetin in Redox Homeostasis.
    Velusamy P; Mohan T; Ravi DB; Kishore Kumar SN; Srinivasan A; Chakrapani LN; Singh A; Varadharaj S; Kalaiselvi P
    Oxid Med Cell Longev; 2020; 2020():9568278. PubMed ID: 32952852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB.
    Wang Y; Sun W; Du B; Miao X; Bai Y; Xin Y; Tan Y; Cui W; Liu B; Cui T; Epstein PN; Fu Y; Cai L
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H567-78. PubMed ID: 23220333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway.
    Xin Y; Bai Y; Jiang X; Zhou S; Wang Y; Wintergerst KA; Cui T; Ji H; Tan Y; Cai L
    Redox Biol; 2018 May; 15():405-417. PubMed ID: 29353218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis.
    An L; Peng LY; Sun NY; Yang YL; Zhang XW; Li B; Liu BL; Li P; Chen J
    Antioxid Redox Signal; 2019 May; 30(15):1831-1848. PubMed ID: 30105924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy.
    Guo J; Mihic A; Wu J; Zhang Y; Singh K; Dhingra S; Weisel RD; Li RK
    Eur Heart J; 2015 Oct; 36(37):2530-40. PubMed ID: 26160001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.