These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23761430)

  • 1. Effect of visual feedback on brain activation during motor tasks: an FMRI study.
    Noble JW; Eng JJ; Boyd LA
    Motor Control; 2013 Jul; 17(3):298-312. PubMed ID: 23761430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex.
    Vaillancourt DE; Mayka MA; Corcos DM
    J Neurophysiol; 2006 Feb; 95(2):922-31. PubMed ID: 16267114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback.
    Mayhew SD; Porcaro C; Tecchio F; Bagshaw AP
    Neuroimage; 2017 Mar; 148():330-342. PubMed ID: 28093359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging effects on the control of grip force magnitude: an fMRI study.
    Noble JW; Eng JJ; Kokotilo KJ; Boyd LA
    Exp Gerontol; 2011 Jun; 46(6):453-61. PubMed ID: 21296649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video mirror feedback induces more extensive brain activation compared to the mirror box: an fNIRS study in healthy adults.
    Bonnal J; Ozsancak C; Prieur F; Auzou P
    J Neuroeng Rehabil; 2024 May; 21(1):78. PubMed ID: 38745322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential force scaling of fine-graded power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Meyer M; Kollias SS
    Hum Brain Mapp; 2009 Aug; 30(8):2453-65. PubMed ID: 19172654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementary motor area and anterior intraparietal area integrate fine-graded timing and force control during precision grip.
    Haller S; Chapuis D; Gassert R; Burdet E; Klarhöfer M
    Eur J Neurosci; 2009 Dec; 30(12):2401-6. PubMed ID: 20092581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical activity in precision- versus power-grip tasks: an fMRI study.
    Ehrsson HH; Fagergren A; Jonsson T; Westling G; Johansson RS; Forssberg H
    J Neurophysiol; 2000 Jan; 83(1):528-36. PubMed ID: 10634893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.
    Neely KA; Coombes SA; Planetta PJ; Vaillancourt DE
    Hum Brain Mapp; 2013 Mar; 34(3):698-712. PubMed ID: 22109998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential representation of dynamic and static power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Kollias SS
    Eur J Neurosci; 2010 Apr; 31(8):1483-91. PubMed ID: 20384781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.
    Alahmadi AA; Samson RS; Gasston D; Pardini M; Friston KJ; D'Angelo E; Toosy AT; Wheeler-Kingshott CA
    Brain Struct Funct; 2016 Jun; 221(5):2443-58. PubMed ID: 25921976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
    Papadelis C; Arfeller C; Erla S; Nollo G; Cattaneo L; Braun C
    Brain Res; 2016 Nov; 1650():252-266. PubMed ID: 27641995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
    Saleh S; Yarossi M; Manuweera T; Adamovich S; Tunik E
    Neuroimage Clin; 2017; 13():46-54. PubMed ID: 27920978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous theta-burst stimulation to primary motor cortex reduces the overproduction of forces following removal of visual feedback.
    Therrien AS; Richardson BA; Balasubramaniam R
    Neuropsychologia; 2011 Aug; 49(10):2941-6. PubMed ID: 21736890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping grip-force related brain activity after a fatiguing motor task in multiple sclerosis.
    Svolgaard O; Winther Andersen K; Bauer C; Hougaard Madsen K; Blinkenberg M; Sellebjerg F; Roman Siebner H
    Neuroimage Clin; 2022; 36():103147. PubMed ID: 36030719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual feedback alters force control and functional activity in the visuomotor network after stroke.
    Archer DB; Kang N; Misra G; Marble S; Patten C; Coombes SA
    Neuroimage Clin; 2018; 17():505-517. PubMed ID: 29201639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of precision grip tasks on cervical spinal network excitability in humans.
    Roche N; Bussel B; Maier MA; Katz R; Lindberg P
    J Physiol; 2011 Jul; 589(Pt 14):3545-58. PubMed ID: 21606115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.
    Bönstrup M; Schulz R; Feldheim J; Hummel FC; Gerloff C
    Neuroimage; 2016 Jan; 124(Pt A):498-508. PubMed ID: 26334836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error.
    Poon C; Coombes SA; Corcos DM; Christou EA; Vaillancourt DE
    J Neurophysiol; 2013 Apr; 109(8):2205-15. PubMed ID: 23365186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.